Nonlinear finite elements/Homework 7/Solutions

From testwiki
Jump to navigation Jump to search

Problem 1: Index Notation

Solutions

Part 1

  1. Determine whether the following expressions are valid in index notation. If valid, identify the free indices and the dummy indices.

1) Ams=bm(crdr)

Invalid. The free indices are m,s on the LHS and m,r on the RHS.

2) Ams=bm(csds)

Valid. Both m and s are free indices.

3) ti=σjinj

Valid. The free index is i and the dummy index is j.

4) ti=σjini

Invalid. The free index is i on the LHS and j on the RHS.

5) xixi=r3

Valid. The dummy index is i. So the sum is a scalar which is equal to r3.

6) Bijcj=3

Invalid. There is one free index on the LHS and no free index on the RHS.

Part 2

Show the following:

1) δii=3

δii=δ11+δ22+δ33=1+1+1=3δii=3

2) eijkepqk=δipδjqδiqδjp

The LHS is

eijkepqk=eij1epq1+eij2epq2+eij3epq3

If i=j, then we have

LHS=(eiik)(epqk)=0;RHS=δipδiqδiqδip=0

We get the same result if p=q. The only nonzero LHS and RHS occur when ij and pq.

  • Case 1: i=1, j=2, p=1, q=2.
LHS=(e121e121)+(e122e122)+(e123e123)=1;RHS=(δ11δ11)(δ12δ12)=1
  • Case 2: i=1, j=2, p=2, q=1 or

i=2, j=1, p=1, q=2.

LHS=(e121e211)+(e122e212)+(e123e213)=1;RHS=(δ12δ21)(δ11δ22)=1
  • Case 3: i=2, j=1, p=2, q=1.
LHS=(e211e211)+(e212e212)+(e213e213)=1;RHS=(δ22δ11)(δ21δ12)=1
  • Case 4: i=2, j=3, p=2, q=3.
LHS=(e231e231)+(e232e232)+(e233e233)=1;RHS=(δ22δ22)(δ23δ23)=1
  • Case 5: i=2, j=3, p=3, q=2 or

i=3, j=2, p=2, q=3.

LHS=(e231e321)+(e232e322)+(e233e323)=1;RHS=(δ23δ32)(δ22δ33)=1
  • Case 6: i=3, j=2, p=3, q=2.
LHS=(e321e321)+(e322e322)+(e323e323)=1;RHS=(δ33δ22)(δ32δ23)=1
  • Case 7: i=3, j=1, p=3, q=1.
LHS=(e311e311)+(e312e312)+(e313e313)=1;RHS=(δ33δ11)(δ31δ13)=1
  • Case 8: i=3, j=1, p=1, q=3 or

i=1, j=3, p=3, q=1.

LHS=(e311e131)+(e312e132)+(e313e133)=1;RHS=(δ31δ13)(δ33δ11)=1
  • Case 9: i=1, j=3, p=1, q=3.
LHS=(e131e131)+(e132e132)+(e133e133)=1;RHS=(δ11δ33)(δ13δ31)=1

Hence the eδ relation is satisfied for all cases.

3) δijeijk=0

δijeijk=eiik=0.

4) eqrsdqds=0

eqrsdqds=q=13s=13eqrsdqds=(e1r1d1d1)+e1r2d1d2+e1r3d1d3+e2r1d2d1+(e2r2d2d2)+e2r3d2d3+e3r1d3d1+e3r2d3d2+(e3r3d3d3)

For r=1,

eqrsdqds=(e112)d1d2+(e113)d1d3+(e211)d2d1+(e213)d2d3+(e311)d3d1+(e312)d3d2=0

For r=2,

eqrsdqds=(e122)d1d2+(e123)d1d3+(e221)d2d1+(e223)d2d3+(e321)d3d1+(e322)d3d2=0

For r=3,

eqrsdqds=(e132)d1d2+(e133)d1d3+(e231)d2d1+(e233)d2d3+(e331)d3d1+(e332)d3d2=0

Hence shown.

Part 3

The elasticity tensor is given by

๐–ข=λ11+2μ๐–จ

where λ,μ are Lame constants, 1 is the second order identity tensor, and ๐–จ is the fourth-order symmetric identity tensor. The two identity tensors are defined as

1=δij๐ži๐žj๐–จ=12[δikδjl+δilδjk]๐ži๐žj๐žk๐žl

The stress-strain relation is

σ=๐–ข:ε

Show that the stress-strain relation can be written in index notation as

σij=2μεij+λεkkδij.

Write the stress-strain relations in expanded form.

σ=๐–ข:ε=(λ11+2μ๐–จ):ε=(λ11):ε+2μ๐–จ:ε

Now, in dyadic notation

11=(δij๐ži๐žj)(δkl๐žk๐žl)=δijδkl๐ži๐žj๐žk๐žlandε=εkl๐žk๐žl

Therefore

(11):ε=δijδklεkl๐ži๐žj=δijεkk๐ži๐žj

Similarly,

๐–จ:ε=(12[δikδjl+δilδjk]εkl)๐ži๐žj=12(δikεkj+δilεjl)๐ži๐žj=12(εij+εji)๐ži๐žj=εij๐ži๐žj(symmetry)

The stress-strain law becomes

σ=λδijεkk๐ži๐žj+2μεij๐ži๐žj=(λδijεkk+2μεij)๐ži๐žj

Expanding the left hand side, we get

σij๐ži๐žj=(λδijεkk+2μεij)๐ži๐žj

Therefore,

σij=λδijεkk+2μεij

Problem 2: Rotating Vectors and Tensors

Let (๐ž1,๐ž2,๐ž3) be an orthonormal basis. Let ๐‘จ be a second order tensor and ๐ฎ be a vector with components

๐‘จ=5๐ž1๐ž14๐ž2๐ž1+2๐ž3๐ž3๐ฎ=2๐ž1+3๐ž3

Solution

Part 1

Write out ๐‘จ and ๐ฎ in matrix notation.

๐€=[500400002];๐ฎ=[203]

Part 2

Find the components of the vector ๐ฏ=๐‘จ๐ฎ in the basis (๐ž1,๐ž2,๐ž3).

The components of ๐ฏ are

vi=Aijuj

Therefore

v1=(5)(2)=10;v2=(4)(2)=8;v3=(2)(3)=6
๐ฏ=10๐ž1+8๐ž2+6๐ž3

Part 3

Find the components of the vector ๐ฐ=๐ฏ×๐ฎ in the basis (๐ž1,๐ž2,๐ž3).

The cross product is given by

๐ฐ=๐ฏ×๐ฎ=|๐ž1๐ž2๐ž3v1v2v3u1u2u3|=|๐ž1๐ž2๐ž31086203|=(8)(3)๐ž1[(10)(3)(6)(2)]๐ž2(8)(2)๐ž3

Therefore,

๐ฐ=24๐ž1+18๐ž2+16๐ž3

Part 4

Find the components of the tensor ๐‘ช=๐ฏ๐ฐ in the orthonormal basis.

The tensor product is given by

๐ฏ๐ฐ=viwj๐ži๐žj

Hence, in matrix notation

๐‚=[v1v2v3][w1w2w3]=[1086][241816]
๐‚=[24018016019214412814410896]

Part 5

Rotate the basis clockwise by 30 degrees around the ๐ž3 direction. Find the components of ๐ฎ, ๐ฏ, ๐ฐ, and ๐‘ช in the rotated basis.

The vector transformation rule is

vi'=lijvi

where lij are the direction cosines.

In this case, the direction cosines are

l11=๐ž1'๐ž1=cos(30)=0.866l12=๐ž1'๐ž2=cos(60)=0.5l13=๐ž1'๐ž3=cos(90)=0l21=๐ž2'๐ž1=cos(120)=0.5l22=๐ž2'๐ž2=cos(30)=0.866l23=๐ž2'๐ž3=cos(90)=0l31=๐ž3'๐ž1=cos(90)=0l32=๐ž3'๐ž2=cos(90)=0l33=๐ž3'๐ž3=cos(0)=1

Therefore,

๐ฎ'=๐‹๐ฎ=[0.8660.500.50.8660001][203]=[1.73213]
๐ฎ'=1.732๐ž1+1๐ž2+3๐ž3

Similarly,

๐ฏ'=๐‹๐ฏ=[0.8660.500.50.8660001][1086]=[4.6611.936]
๐ฏ'=4.66๐ž1+11.93๐ž2+6๐ž3

Also,

๐ฐ'=๐‹๐ฐ=[0.8660.500.50.8660001][241816]=[29.783.5916]
๐ฏ'=29.78๐ž1+3.59๐ž2+16๐ž3

From the handout from Slaughter's book, the tensor transformation rule is

Tij'=lipljqTpq

where lij are the direction cosines.

In matrix form,

๐“'=๐‹๐“๐‹T

Therefore the components of ๐‘ช in the rotated basis are give by

๐‚'=[0.8660.500.50.8660001][24018016019214412814410896][0.8660.500.50.8660001]=[138.816.774.6355.342.8190.9178.721.596]
๐‚'=[138.816.774.6355.342.8190.9178.721.596]

Problem 3: More Beams

Part A

Consider a beam of length L = 100 in., cross-section 1 in. × 1 in., and subjected to a uniformly distributed transverse load q0 lbf/in. Model one half of the beam using symmetry considerations.

Part 1

Hinged-Hinged Beam

The boundary conditions are

w0(0)=u0(L/2)=φx(L/2)=0.

Compute a plot similar to that shown in Figure 4.3.4 for this case using Beam188 elements. What do you observe?

The result is shown in Table 1.

Table 1. Deflections of a hinged-hinged beam
Load Uy at x=L/2
1 -0.520746
2 -1.04086
3 -1.55922
4 -2.07510
5 -2.58768
6 -3.09622
7 -3.60000
8 -4.09835
9 -4.59065
10 -5.07636

Part 2

Clamped-Clamped Beam

The boundary conditions are

u0(0)=w0(0)=φx(0)=u0(L/2)=φx=L/2=0.

Compute a plot for this case using Beam188 elements. Comment on your plot.

The result is shown in Table 2.

Table 2. Deflections of a clamped-clamped beam
Load Uy at x=L/2
1 -0.103456
2 -0.202476
3 -0.294220
4 -0.377753
5 -0.453387
6 -0.521968
7 -0.584455
8 -0.644185
9 -0.696440
10 -0.745243

Listed below is the ANSYS input code for Problem 3A.1 and 3A.2.

/prep7

b = 1
h = 1

et,1,188
sectype,1,beam,rect
secdata,b,h

MP,EX,1,30e6
MP,PRXY,1,0.3

K,1,0,0,0
K,2,50,0,0
k,3,0,50,0

L,1,2,50

latt,1,,1,,3,3,1

LMESH,ALL

!change this section to d,1,all,0 for Problem 3A.2
d,1,uy,0
d,1,uz,0
d,2,rotz,0
nsel,all

sfbeam,all,,pres,10

fini

/solu
nlgeom,on
autots,on
nsubst,10,100,10
outres,all,all
solve
finish

Part B

Part 1

Simulate the unrolling of a cantilever beam from Section 4.1.1 of Ibrahimbegovic (1995) and compare your results with the results shown in the paper.

The result is shown in Table 3.

Table 3. Cantilever free-end displacement components
Load Ux Uy Rotation
M=10π -0.040666 6.3205 -3.1287
M=20π 9.9578 0.12729 -6.2577

The deformation plots are shown in Figure 4 and 5.

File:NFE HW7 3B1a.png
Figure 4. Deformed shape under M=10π for Problem 3B.1.
File:NFE HW7 3B1b.png
Figure 5. Deformed shape under M=20π for Problem 3B.1.

The ANSYS input code for this problem is listed below.

/prep7

et,1,beam188
sectype,1,beam,rect
secdata,1,1

mp,ex,1,1200
mp,prxy,1,0

l = 10
pi = 4*atan(1)
r = L/2/pi

K,1,0,-r
K,2,-r,0
K,3,0,r
K,4,r,0
K,5,0,-r

k,6,0,0,10

k,7,0,0,0

larc,1,2,7,r,5
larc,2,3,7,r,5
larc,3,4,7,r,5
larc,4,5,7,r,5

latt,1,,1,,6,6,1
lmesh,all

dk,5,all,0

fk,1,mz,-20*pi

/solu
nlgeom,on
cnvtol,f,5,0.001
outres,all,all
arclen,on
nsubst,100
solve
fini

Part 2

Simulate the clamped-hinged deep circular arch from Example 7.3 of Simo and Vu Quoc (1986) and compare you results with the results shown in the paper.

The inputs are:R=100, φ=145o, EI=106, and EA=100EI. We assume a square cross section. Then

I=112h4;A=h2EAEI=AI;12h2h4=12h2=100

Therefore, h=0.34641.

The deformed shape (unconverged) for a load of 905 is shown in Figure 6.

File:NFE HW7Prob3 2 def.png
Figure 6. Deformed shape of arch.

The load-displacement curve (up to the last converged solution) is shown in Figure 7.

File:NFE HW7Prob3 2 load.png
Figure 7. Load-displacement plot for circular arch.

The buckling load is 900.925 compared to 905.28 in Simo and Vu Quoc.

The ANSYS file use for the calculations is shown below.

/prep7  
!*
!* Total load
!*
load = 905.0
!*  
!*  Element type
!*
et,1,beam188
keyopt,1,1,0
keyopt,1,2,0
keyopt,1,3,0
keyopt,1,4,0
keyopt,1,6,0
keyopt,1,7,0
keyopt,1,8,0
keyopt,1,9,0
keyopt,1,10,0   
keyopt,1,11,0   
keyopt,1,12,0   
!*
!*  Beam cross-section type
!*
sectype, 1, beam, rect, , 0   
secoffset, cent 
secdata, 0.34641, 0.34641, 0,0,0,0,0,0,0,0 
!*  
!*  Material properties
!* 
mptemp,,,,,,,,  
mptemp,1,0  
mpdata,ex,1,,8.3e8  
mpdata,prxy,1,,0.33 
!*
!* Keypoints
!*
k, 1,   0.000,   0.000, 0.000
k, 2, -95.372, -30.071, 0.000
k ,3,  95.372, -30.071, 0.000 
k ,4,   0.000, 100.000, 0.000
!*  
!* Arcs
!*
larc,3,4,1,100, 
larc,4,2,1,100, 
!*  
!* Element size = 20 elements per arc
!*
lesize,all, , ,20, ,1, , ,1,
!*
!* Mesh the arcs
!*
lmesh, all
!*
!* Plot the nodes
!*
nplot   
/pnum,node,1
/number,0   
/replot 
!*
!* Apply displacement BCs
!*
!* Hinged end
!*
d, 22, ux, 0
d, 22, uy, 0
d, 22, uz, 0
!*
!* Clamped end
!*
d, 1, all, 0
!*
!* Apply load
!*
f, 2, fy, -load
finish  
!*
!* Solve
!*
/solu
antype, static
nlgeom, on
!autots, on
!solcontrol, on
!*
!* Load step 1
!*
time, 1.0
! f, 2, fy, -load
nsubst,100,0,0  
kbc, 0
neqit, 100
outres, ,1
arclen,on,100.0,0.0
lswrite
solve
finish  
!*
!* See solution
!*
/post26
!*
!* Save solution in variables 2 and 3
!*
nsol, 2, 2, u, x               ! Save ux at node 2
nsol, 3, 2, u, y               ! Save uy at node 2
!*
!* Scale solution
!*
prod, 4, 1, , , Load, , ,load  ! Scale time to get load
prod, 5, 2, , ,     , , ,-1    ! Make disp +ve
prod, 6, 3, , ,     , , ,-1    ! Make disp +ve
prvar, 4, 5, 6                 ! Print load, ux, uy
!*
!* Plot solution
!*
/axlab, x, Deflection
/axlab, y, Load
/grid, 1
xvar, 5                     
plvar, 4                       ! plot ux vs load
/noerase
xvar, 6
plvar, 4                       ! plot uy vs load
/erase

Here is another version of solution to this problem.

File:NFE HW7 3B2xy.png
Figure 8. Force-displacement diagram for Problem 3B.2.
File:NFE HW7 3B2.png
Figure 9. Shape deformation at the last load step for Problem 3B.2.

The ANSYS input code for Problem 3B.2 is listed below.

/prep7

A = 1
I = A/100
E = 1e6/I
nu = 0.3

et,1,beam188                ! Element type - BEAM188
sectype,1,beam,asec
secdata,A,I,,I,,2*I

mp,ex,1,E
mp,prxy,1,nu

pi = 4*atan(1)
phi = 35/2/180*pi
x = 100*cos(phi)
y = 100*sin(phi)

k,1,0,0,0
k,2,x,-y,0
k,3,0,100,0
k,4,-x,-y

k,5,0,0,100

larc,2,3,1,100
larc,3,4,1,100
latt,1,,1,,5,5,1

lesize,all,,,40
lmesh,all

dk,2,all,0
dk,4,ux,0
dk,4,uy,0
dk,4,uz,0

fk,3,fy,-900

/solu
nlgeom,on
nsubst,100,0,0
outres,all,all
arclen,on
solve
finish

Part 3

Simulate the buckling of a hinged right-angle frame under both fixed and follower loads from Example 7.4 of Simo and Vu Quoc (1986) and compare your results with those shown in the paper.

The force-displacement diagram is shown in Figure 10. The deformation is illustrated in Figure 11 and 12.

File:NFE HW7 3B3xy.png
Figure 10. Force-displacement diagram for Problem 3B.3.
File:NFE HW7 3B3a.png
Figure 11. Deformation (fixed load) at the last load step for Problem 3B.3.
File:NFE HW7 3B3b.png
Figure 12. Force-displacement diagram (follower load) for Problem 3B.3.

The ANSYS input code for Problem 3B.3 is listed below.

/prep7

et,1,188

E = 7.2e6
I = 2
A = 6

sectype,1,beam,asec
secdata,A,I,,I,,2*I

mp,ex,1,7.2e6
mp,prxy,1,0.3

k,1,0,0,0
k,2,0,120,0
k,3,23,120,0
k,4,26,120,0
k,5,120,120,0

k,6,200,0,0
k,7,0,200,0
l,1,2,5
l,2,3,1
l,3,4,2
l,4,5,4

latt,1,,1,,6,6,1
lmesh,1
latt,1,,1,,7,7,1
lmesh,2,4

d,1,ux,0
d,1,uy,0
d,1,uz,0

d,18,ux,0
d,18,uy,0
d,18,uz,0

esel,s,elem,,7,8

!replace the line below with f,15,fy,-40000 for fixed load

sfbeam,all,,pres,40000/2
esel,all

fini

/solu
nlgeom,on
outres,all,all
arclen,on
nsubst,200
solve
fini

Warning: The arc length method no longer converges with Ansys 13. Try using the stabilization option instead of arclen, on:

stabilize, constant, energy, 0.001, anytime, 0

Template:Subpage navbar