Nonlinear finite elements/Stress and strain in one and two dimension

From testwiki
Jump to navigation Jump to search

Template:TOCright

Stresses and strain in one dimension

1-D strain measures

  • Engineering strain :
εE:=lLL=ΔLL
  • Natural/Logarithmic/True strain:
εL:=Lldll=ln(l)|Ll=ln(lL)

Relation between engineering and true strain:

εL=ln(L+ΔLL)=ln(1+ΔLL)=ln(1+εE)
  • Green (Lagrangian) strain :
εG:=12(l2L2L2)=12(l2L21)
  • Almansi-Hamel (Eulerian) strain :
εA:=12(l2L2l2)=12(1L2l2)

1-D stress measures

  • Engineering/Nominal stress:
P=σE:=TA
  • Cauchy/True stress:
σ=σT:=Ta

Relation between engineering and true stress (no volume change):

σT=Ta=TlAL=σE(L+ΔLL)=σE(1+εE)

1-D stress-strain relations

  • True stress - Green strain:
σT=ETG(l2L22L2)
  • True stress - True strain:
σT=ETTln(lL)

Example

File:BarStretch.png
Stretching of a bar
cock
sinθ=xl(x)
  • Assume incompressible material.
V=v;AL=alor :V=al;a=V/l}
  • Equilibrium.
T(x)=F:R(x)=T(x)F=0

where

T(x)=σ(x)a(x)sinθ=σ(x)a(x)xl(x)=σ(x)Vxl(x)2

Stress-strain relation 1

σ(x)=E(l(x)2L22L2)

Then,

T(x)=Ea(x)xl(x)(l(x)2L22L2)=EVxl2(l2L22L2)

and

R(x)=EVxl2(l2L22L2)F

Highly nonlinear in x.

Stiffness

Stiffness = change in equilibrium equation due to change in position.

K(x)=dR(x)dx=dT(x)dx(ifF is constant)

Now,

T(x)=σ(x)Vxl(x)2

Therefore,

dTdx=V[xddx(σl2)+σl2]=V[xddσ(σl2)dσdx+xddl(σl2)dldx+σl2]=V[xl2dσdldldx2xσl3dldx+σl2]=Vxl2(dσdl2σl)dldx+Vσl2=Vxl2(dσdl2σl)xl+Vσl2K=a(dσdl2σl)x2l2+σal
σ=E(l2L22L2)dσdl=ElL2
K=a(dσdl2σl)x2l2+σal=a(ElL22σl)x2l2+σal=AL(E2S)x2l2+SAL

Initial stress/Geometric stiffness

SAL;S=σL2l2=PLl

Stress-strain relation 2

σ(x)=Eln(l(x)L)

Then,

T(x)=Ea(x)xl(x)ln(l(x)L)=EVxl2ln(lL)

and

R(x)=EVxl2ln(lL)F

Highly nonlinear in x.

σ=Eln(lL)dσdl=El

Stiffness

K=a(dσdl2σl)x2l2+σal=a(El2σl)x2l2+σal=al(E2σ)x2l2+σal

Initial stress/Geometric stiffness:

σal

Strain measures in two dimensions

File:Rot2D.png
Strains in two dimensions

Small strains

εxx=uxxεyy=uyyεxy=12(uxy+uyx)

For 90 o rotation,

ux=YX;uy=XY

Then strains are:

εxx=1εyy=1εxy=0

Rotation should not lead to non-zero strains!


Finite strains

File:Green2D.png
Green strain in two dimensions

For 90 o rotation,

ux=YX;uy=XY

Then,

Exx=0;Eyy=0;Exy=0

Green strain (1-D)

εG=l2L22L2

In 2-D:

Exx=ds2dX22dX2

Now,

ds2=dX2(1+uxX)2+dX2(uyX)2

Therefore,

Exx=dX22dX2[(1+uxX)2+(uyX)21]=uxX+12[(uxX)2+(uyX)2]

Similar for Eyy and Exy.


Template:Subpage navbar