Nonlinear finite elements/Timoshenko beams

From testwiki
Jump to navigation Jump to search

Timoshenko Beam

File:TimoshenkoBeam.png
Timoshenko beam.

Displacements

u1=u0(x)+zφxu2=0u3=w0(x)

Strains

εxx=εxx0+zεxx1γxz=γxz0
εxx0=du0dx+12(dw0dx)2εxx1=dφxdxγxz0=φx+dw0dx

Principle of Virtual Work

δWint=δWext

where

δWint=xaxbA(σxxδεxx+σxzδγxz)dAdx=xaxb(Nxxδεxx0+Mxxδεxx1+Qxδγxz0)dxδWext=xaxbqδw0dx+xaxbfδu0dx
Qx=KsAσxzdA

Ks = shear correction factor

Taking Variations

εxx0=du0dx+12(dw0dx)2

Take variation

δεxx0=d(δu0)dx+12(2dw0dx)(d(δw0)dx)=d(δu0)dx+dw0dxd(δw0)dx.
εxx1=dφxdx

Take variation

δεxx1=dδφxdx
γxz0=φx+dw0dx

Take variation

δγxz0=δφx+d(δw0)dx

Internal Virtual Work

xaxbNxxδεxx0dx=xaxbNxx[d(δu0)dx+dw0dxd(δw0)dx]dxxaxbMxxδεxx1dx=xaxbMxx[dδφxdx]dxxaxbQxδγxz0dx=xaxbQx[δφx+d(δw0)dx]dx
δWint=xaxb{Nxx[d(δu0)dx+dw0dxd(δw0)dx]+Mxx[dδφxdx]+Qx[δφx+d(δw0)dx]}dx

Integrate by Parts

Get rid of derivatives of the variations.

xaxbNxx[d(δu0)dx+dw0dxd(δw0)dx]dx=[Nxxδu0]xaxbxaxbdNxxdxδu0dx+[Nxxdw0dxδw0]xaxbxaxbddx(Nxxdw0dx)δw0dxxaxbMxx[d(δφx)dx]dx=[Mxxδφx]xaxbxaxbdMxxdxδφxdxxaxbQx[δφx+d(δw0)dx]dx=xaxbQxδφxdx+[Qxδw0]xaxbxaxbdQxdxδw0dx

Collect terms

[Nxxδu0]xaxbxaxbdNxxdxδu0dx+[Nxxdw0dxδw0+Qxδw0]xaxbxaxb[ddx(Nxxdw0dx)+dQxdx]δw0dx+[Mxxδφx]xaxbxaxb(dMxxdxQx)δφxdx=xaxbqδw0dx+xaxbfδu0dx

Euler-Lagrange Equations

xaxb(dNxxdx+f)δu0dx=[Nxxδu0]xaxbxaxb[ddx(Nxxdw0dx)+dQxdx+q]δw0dx=[Nxxdw0dxδw0+Qxδw0]xaxbxaxb(dMxxdxQx)δφxdx=[Mxxδφx]xaxb
dNxxdx+f=0ddx(Nxxdw0dx)+dQxdx+q=0dMxxdxQx=0

Constitutive Relations

σxx=Eεxx;σxz=Gγxz

Then,

Nxx=Axxεxx0+Bxxεxx1Mxx=Bxxεxx0+Dxxεxx1Qx=Sxxγxz0

where

Sxx=KsAGdAshear stiffness

Equilibrium Equations

ddx{Axx[du0dx+12(dw0dx)2]}+f=0ddx{Sxx(dw0dx+φx)+Axxdw0dx[du0dx+12(dw0dx)2]}+q=0ddx(Dxxdφxdx)+Sxx(dw0dx+φx)=0

Weak Form

xaxbAxxd(δu0)dx[du0dx+12(dw0dx)2]dx=xaxbfδu0dx+[Nxxδu0]xaxbxaxbAxxd(δw0)dxdw0dx[du0dx+12(dw0dx)2]dx+xaxbSxxd(δw0)dx(dw0dx+φx)dx=xaxbqδu0dx+[(Nxxdw0dx+Qx)δw0]xaxbxaxbSxxδφx(dw0dx+φx)dx+xaxbDxxd(δφx)dxdφxdxdx=[Mxxδφx]xaxb

Finite element model

Trial Solution

u0(x)=j=1mujψj(1);δu0=ψi(1)w0(x)=j=1nwjψj(2);δw0=ψi(2)φx(x)=j=1psjψj(3);δφx=ψi(3)

Element Stiffness Matrix

[𝐊11𝐊12𝐊13𝐊21𝐊22𝐊23𝐊31𝐊32𝐊33][𝐮𝐰𝐬]=[𝐅1𝐅2𝐅3]

Choice of Approximate Solutions

Choice 1

ψ(1) = linear (m=2)
ψ(2) = linear (n=2)
ψ(3) = linear (p=2).

Nearly singular stiffness matrix (6×6).

Choice 2

ψ(1) = linear (m=2)
ψ(2) = quadratic (n=3)
ψ(3) = linear (p=2).

The stiffness matrix is (7×7). We can statically condense out the interior degree of freedom and get a (6×6) matrix. The element behaves well.

Choice 3

ψ(1) = linear (m=2)
ψ(2) = cubic (n=4)
ψ(3) = quadratic (p=3)

The stiffness matrix is (9×9). We can statically condense out the interior degrees of freedom and get a (6×6) matrix. If the shear and bending stiffnesses are element-wise constant, this element gives exact results.

Shear Locking

Example Case

Linear u0, Linear w0, Linear φx.

dw0dx=constant.

But, for thin beams,

dw0dx=slope=φx(linear!)

If constant φx

dφxdx=0

Also

  1. Qx=Sxxφx0 Non-zero transverse shear.
  2. Mxx=Dxxdφxdx=0 Zero bending energy.

Result: Zero displacements and rotations Shear Locking!

Recall

ddx{Axx[du0dx+12(dw0dx)2]}+f=0

or,

ddx{Axxεxx0}+f=0

If f=0 and Axx= constant

Axxddx(εxx0)=0εxx0=constant.

If there is only bending but no stretching,

εxx0=0=du0dx+12(dw0dx)2

Hence,

du0dx(dw0dx)2

Also recall:

ddx{Sxx(dw0dx+φx)+Axxdw0dx[du0dx+12(dw0dx)2]}+q=0

or,

ddx{Sxxγxz0+Axxdw0dxεxx0}+q=0

If q=0 and Sxx= constant, and no membrane strains

Sxxddx(γxz0)=0γxz=constant=dw0dx+φx

Hence,

φxdw0dx

Shape functions need to satisfy:

Template:Center top
du0dx(dw0dx)2;andφxdw0dx
Template:Center bottom

Example Case 1

Linear u0, Linear w0, Linear φx.

  • First condition constant = constant. Passes! No Membrane Locking.
  • Second condition linear = constant. Fails! Shear Locking.

Example Case 2

Linear u0, Quadratic w0, Linear φx.

  • First condition constant = quadratic. Fails! Membrane Locking.
  • Second condition linear = linear. Passes! No Shear Locking.

Example Case 3

Quadratic u0, Quadratic w0, Linear φx.

  • First condition linear = quadratic. Fails! Membrane Locking.
  • Second condition linear = linear. Passes! No Shear Locking.

Example Case 4

Cubic u0, Quadratic w0, Linear φx.

  • First condition quadratic = quadratic. Passes! No Membrane Locking.
  • Second condition linear = linear. Passes! No Shear Locking.

Overcoming Shear Locking

Option 1

  • Linear u0, linear w0, linear φx.
  • Equal interpolation for both w0 and ϕx.
  • Reduced integration for terms containing ϕx - treat as constant.

Option 2

  • Cubic u0, quadratic w0, linear φx.
  • Stiffness matrix is 9×9.
  • Hard to implement.


Template:Subpage navbar