Nonlinearity of Boolean functions
The Template:W of a Boolean function measures how far it is from being a linear Boolean function.
It is the smallest Template:W of its truth table to that of a linear.
As an integer it is a soft property (i.e. dependent on arity).
But it can be easily defined as a fraction, which is a hard property.
- arity , Template:Spaces soft nonlinearity , Template:Spaces hard nonlinearity
Let . The highest nonlinearity for arity is .
A Boolean function with nonlinearity is a Template:W. They exist when is an integer, i.e. for even .
The finite sequences Template:Oeislink and Template:Oeislink show the nonlinearities for arities 3 and 4. (The indices encode the truth tables.)
For a given arity the nonlinearity is an integer. They are the column indices of the following number triangle.
Template:Boolf triangle Hazel/integers
Template:Boolf triangle Hazel/sources
But the columns make more sense, when the nonlinearity is defined as a fraction:
| arity | nonlinearity | total | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 4 | 4 | ||||||||||||||||||||||||||||
| 2 | 8 | 8 | 16 | |||||||||||||||||||||||||||
| 3 | 16 | 128 | 112 | 256 | ||||||||||||||||||||||||||
| 4 | 32 | 512 | 3840 | 17920 | 28000 | 14336 | 896 | 65536 | ||||||||||||||||||||||
| 5 | 64 | 2048 | 31744 | 317440 | 2301440 | 12888064 | 57996288 | 215414784 | 647666880 | 1362452480 | 1412100096 | 556408832 | 27387136 | 4294967296 | ||||||||||||||||
| 6 | 128 | 8192 | 258048 | 5332992 | 81328128 | 975937536 | 9596719104 | 79515672576 | 566549167104 | 3525194817536 | 19388571496448 | 95180260073472 | 420379481991168 | 1681517927964672 | 6125529594728448 | 20418431982428160 | 62526600834171264 | 176395152249028608 | 458313050588725248 | 1087405010755682304 | 2291582136636334080 | 4011570131804454912 | 5097726702198767616 | 3821934098435833856 | 1305039828998603264 | 103868560519987200 | 1617838297055232 | 347227553792 | 5425430528 | 18446744073709551616 |
Template:Collapsible START Every entry can be divided by the first entry of the row:
| arity | nonlinearity | total | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | ||||||||||||||||||||||||||||
| 2 | 1 | 1 | 2 | |||||||||||||||||||||||||||
| 3 | 1 | 8 | 7 | 16 | ||||||||||||||||||||||||||
| 4 | 1 | 16 | 120 | 560 | 875 | 448 | 28 | 2048 | ||||||||||||||||||||||
| 5 | 1 | 32 | 496 | 4960 | 35960 | 201376 | 906192 | 3365856 | 10119795 | 21288320 | 22064064 | 8693888 | 427924 | 67108864 | ||||||||||||||||
| 6 | 1 | 64 | 2016 | 41664 | 635376 | 7624512 | 74974368 | 621216192 | 4426165368 | 27540584512 | 151473214816 | 743595781824 | 3284214703056 | 13136858812224 | 47855699958816 | 159518999862720 | 488489069016963 | 1378087126945536 | 3580570707724416 | 8495351646528768 | 17902985442471360 | 31340391654722304 | 39825989860927872 | 29858860144029952 | 10195623664051588 | 811473129062400 | 12639361695744 | 2712715264 | 42386176 | 144115188075855872 |
| arity | nonlinearity | total | ||||
|---|---|---|---|---|---|---|
| 1 | 0 | |||||
| 2 | 1 | 1 | ||||
| 3 | 8 | 7 | 15 | |||
| 4 | 16 | 120 | 875 | 1011 | ||
| 5 | 32 | 496 | 35960 | 10119795 | 10156283 | |
| 6 | 64 | 2016 | 635376 | 4426165368 | 488489069016963 | 488493495819787 |
Every entry can be divided by the first entry of the column:
| arity | nonlinearity | total | ||||
|---|---|---|---|---|---|---|
| 1 | 0 | |||||
| 2 | 1 | 1 | ||||
| 3 | 1 | 7 | 8 | |||
| 4 | 1 | 15 | 875 | 891 | ||
| 5 | 1 | 31 | 4495 | 10119795 | 10124322 | |
| 6 | 1 | 63 | 39711 | 553270671 | 488489069016963 | 488489622327409 |
Zhegalkin deviation
The terminology used here is likely to be changed again.
Each BF can be assigned a Zhegalkin index – a unique integer, independent of arity.
Its binary exponents shall be called Zhegalkin exponents. For Walsh functions they are only powers of two (see here). For negated Walsh functions also 0.
Here is a way to define a different kind of Hamming distance from linears:
The Zhegalkin exponents of the BF are split into those that are 0 or powers of two, and those that are not.
So one BF is split in two BF, which shall be called its Zhegalkin linear and deviation.
The Zhegalkin weight of the deviation (the number of Zhegalkin exponents that are not 0 or powers of two) is also a degree, to which the BF is not linear.
Template:Boolf prop 3-ary (reverse prefect) Template:Spaces Template:Boolf prop 3-ary (reverse prefect signed weight)
Template:Boolf prop 3-ary (twin prefect) Template:Spaces Template:Boolf prop 3-ary (twin prefect signed weight) Template:Spaces Template:Boolf prop 3-ary Template:Spaces Template:Boolf prop 3-ary binary Template:Spaces Template:Boolf prop 3-ary binary