Use Romberg Integration to compute R3,3 for ∫01x2e−xdx
Solution:
R1,1=h12[f(0)+f(1)] R1,1=12[0+1e] R1,1=.1839397206
R2,1=(12)[R1,1+h1f(a+h2)] R2,1=.1379547904
R3,1=(12)[R2,1+h2(f(a+h3)+f(a+3h3))] R3,1=.1475727039
R2,2=R2,1+R2,1−R1,14−1 R2,2=.1226264803
R3,2=R3,1+R3,1−R2,14−1 R3,2=.1507786751
R3,3=R3,2+R3,2−R2,216−1 R3,3=.1526554881