OpenStax University Physics/V1/Equations (master)

From testwiki
Jump to navigation Jump to search


Equations (master) | Formulas (master) | Equations | Formulas | College Physics

Equations inspired by the Chapter Summaries of OpenStax University Physics Volume 1. Instructors who wish to base their course notes on Wikiversity should not use this version, but instead copy this much more user-friendly that contains easily understood transclusions to this "master". A four-page summary suitable for use during in-class exams is available in two different versions: "master" (online viewing) and "compact". The "compact" version is also available in this pdf form.

<section begin=Introduction/>

Introduction

metric prefixes
da h k M G T P E Z Y
deca hecto kilo mega giga tera peta exa zetta yotta
1E+01 1E+02 1E+03 1E+06 1E+09 1E+12 1E+15 1E+18 1E+21 1E+24
d c m µ n p f a z y
deci centi milli micro nano pico femto atto zepto yocto
1E-01 1E-02 1E-03 1E-06 1E-09 1E-12 1E-15 1E-18 1E-21 1E-24

<section end=Introduction/> <section begin=Units_and_Measurement/>

Units_and_Measurement

The base SI units are mass: kg (kilogram); length: m (meter); time: s (second). Percent error is (δA/A)×100%

<section end=Units_and_Measurement/> <section begin=Vectors/>

Vectors

Vector A=Axi^+Ayj^+Azk^ involves components (Ax,Ay,Az) and three orthonormal unit vectors.

▭ If A+B=C, then Ax+Bx=Cx, etc, and vector subtraction is defined by B=CA.

▭ The two-dimensional displacement from the origin is r=xi^+yj^. The magnitude is A|A|=Ax2+Ay2. The angle (phase) is θ=tan1(y/x).

▭ Scalar multiplication αA=αAxi^+αAyj^+...

▭ Any vector divided by its magnitude is a unit vector and has unit magnitude: |V^|=1 where V^V/V

▭ Dot product AB=ABcosθ=AxBx+AyBy+... and AA=A2

▭ Cross product A=B×C Aα=BβCγCγAβ where (α,β,γ) is any cyclic permutation of (x,y,z), i.e., (α,β,γ) represents either (x,y,z) or (y,z,x) or (z,x,y).

▭ Template:Nowrap magnitudes obey A=BCsinθ where θ is the angle between B and C, and A{B,C} by the right hand rule.

▭ Vector identities c(𝐀+𝐁)=c𝐀+c𝐁

▭ 𝐀+𝐁=𝐁+𝐀

▭ 𝐀+(𝐁+𝐂)=(𝐀+𝐁)+𝐂

▭ 𝐀𝐁=𝐁𝐀

▭ 𝐀×𝐁=𝐁×𝐀

▭ (𝐀+𝐁)𝐂=𝐀𝐂+𝐁𝐂

▭ (𝐀+𝐁)×𝐂=𝐀×𝐂+𝐁×𝐂

▭ 𝐀(𝐁×𝐂)=𝐁(𝐂×𝐀)=(𝐀×𝐁)𝐂

▭ 𝐀×(𝐁×𝐂)=(𝐀𝐂)𝐁(𝐀𝐁)𝐂

▭ (A×B)(𝐂×𝐃)=(𝐀𝐂)(𝐁𝐃)(𝐁𝐂)(𝐀𝐃) <section end=Vectors/> <section begin=Motion_Along_a_Straight_Line/>

Motion_Along_a_Straight_Line

Delta as difference Δx=xfxidx0 in limit of differential calculus.

▭ Average velocity v¯=Δx/Δtv=dx/dt (instantaneous velocity)

▭ Acceleration a¯=Δv/Δta=dv/dt.

▭ WLOG set Δt=t and Δx=xx0 if ti=0. Then Δv=vv0, and v(t)=0ta(t)dt+v0, x(t)=0tv(t)dt+x0=x0+v¯t, where v¯=1t0tv(t)dt is the average velocity.

▭ At constant acceleration: v¯=v0+v2,v=v0+at,x=x0+v0t+12at2, v2=v02+2aΔx.

▭ For free fall, replace xy (positive up) and ag, where g = 9.81 m/s2 at Earth's surface). <section end=Motion_Along_a_Straight_Line/> <section begin=Motion_in_Two_and_Three_Dimensions/>

Motion_in_Two_and_Three_Dimensions

Instantaneous velocity: v(t)=vx(t)i^+vy(t)j^+vz(t)k^=dxdti^+dydtj^+dzdtk^ =limΔt0ΔrΔt=limΔt0r(t+Δt)r(t)Δt, where r(t)=x(t)i^+y(t)j^+z(t)k^

▭ Acceleration a=axi^+ayj^+azk^, where ax(t)=dvx/dt=d2x/dt2.

▭ Average values: vave=ΔrΔt=r(t2)r(t2)t2t1, and aave=ΔvΔt=v(t2)v(t2)t2t1

▭ Free fall time of flight Tof=2(v0sinθ0)g, ▭ Trajectory y=(tanθ0)x[g2(v0cosθ0)2]x2, ▭ Range R=v02sin2θ0g

▭ Uniform circular motion: |a|=aC=ω2r=v2/r where v|v|=ωr

r=Acosωti^+Asinωtj^, v=Aωsinωti^+Aωcosωtj^, a=Aω2cosωti^Aω2sinωtj^.


▭ Tangential and centripetal acceleration a=ac+aT where aT=d|v|/dt.

▭ Relative motion: rPS=rPS+rSS, vPS=vPS+vSS, vPC=vPA+vAB+vBC, aPS=aPS+aSS <section end=Motion_in_Two_and_Three_Dimensions/> <section begin=Newton's_Laws_of_Motion/>

Newton's_Laws_of_Motion

Newton's 2nd Law ma=dp/dt=Fj, where p=mv is momentum, m is mass, and Fj is the sum of all forces This sum needs only include external forces because all internal forces cancel by the 3rd law FAB=FBA. The 1st law is that velocity is constant if the net force is zero.

▭ Weight=w=mg.

▭ normal force is a component of the contact force by the surface. If the only forces are contact and weight, |N|=N=mgcosθ where θ is the angle of incline.

▭ Hooke's law F=kx where k is the spring constant. <section end=Newton's_Laws_of_Motion/>

<section begin=Applications_of_Newton's_Laws/>

Applications_of_Newton's_Laws

fsμsN and fk=μkN: f= friction, μs,k= coefficient of (static,kinetic) friction, N= normal force.

▭ Centripetal forceFc=mv2/r=mrω2 for uniform circular motion. Angular velocity ω is measured in radians per second.

▭ Ideal angle of banked curve: tanθ=v2/(rg) for curve of radius r banked at angle θ.

▭ Drag equation FD=12CρAv2 where C= Drag coefficient, ρ= mass density, A= area, v= speed. Holds approximately for large Reynold's number =Re=ρvL/η, where η=dynamic viscosity; L= characteristic length.

▭ Stokes's law models a sphere of radius r at small Reynold's number: Fs=6πrηv. <section end=Applications_of_Newton's_Laws/> <section begin=Work_and_Kinetic_Energy/>

Work_and_Kinetic_Energy

Infinitesimal work done by force: dW=Fdr=|F||dr|cosθ leads to the path integral WAB=ABFdr

▭ Work done from A→B by friction fk|AB|,gravity mg(yByA), and spring 12k(xB2xA2)

▭ Work-energy theorem: The work done on a particle is Wnet=KBKA where kinetic energy =K=12mv2=p22m.

▭ Power=P=dW/dt=Fv. <section end=Work_and_Kinetic_Energy/> <section begin=Potential_Energy_and_Conservation_of_Energy/>

Potential_Energy_and_Conservation_of_Energy

Potential Energy: ΔUAB=UBUA=WAB; PE at r WRT r0 is ΔU=U(r)U(r0)

U=mgy+𝒞 (gravitational PE Earth's surface. U=12kx2+𝒞 (ideal spring)

▭ Conservative force: Fconsdr=0. In 2D, F(x,y) is conservative if and only if F=(U/x)i^(U/y)j^Fx/y=Fy/x

▭ Mechanical energy is conserved if no non-conservative forces are present: 0=Wnc,AB=Δ(K+U)AB=ΔEAB <section end=Potential_Energy_and_Conservation_of_Energy/>

<section begin=Linear_Momentum_and_Collisions/>

Linear_Momentum_and_Collisions

F(t)=dp/dt, where p=mv is momentum.

▭ Impulse-momentum theorem J=FaveΔt=titfFdt=Δp.

▭ For 2 particles in 2D If Fext=0 then j=1Npj=0pf,α=p1,i,α+p2,i,α where (α,β)=(x,y)

▭ Center of mass: rCM=1Mj=1Nmjrj1Mrdm, vCM=ddtrCM, and pCM=j=1Nmjvj=MvCM.

▭ F=ddtpCM=maCM=j=1Nmjaj

▭ Rocket equation mdv=udmΔv=uln(mf/mi) where u is the gas speed WRT the rocket. <section end=Linear_Momentum_and_Collisions/> <section begin=Fixed-Axis_Rotation/>

Fixed-Axis_Rotation

θ=s/r is angle in radians,ω=dθ/dt is angular velocity;

▭ vt=ωr=ds/dt is tangential speed. Angular acceleration is α=dω/dt=d2θ/dt2. at=αr=d2s/dt2 is the tangential acceleration.

▭ Constant angular acceleration ω¯=12(ω0+ωf) is average angular velocity.

▭ θf=θ0+ω¯t=θ0+ω0t+12αt2.

▭ ωf=ω0+αt. ωf2=ω02+2αΔθ.

▭ Total acceleration is centripetal plus tangential: a=ac+at.

▭ Rotational kinetic energy is K=12Iω2, where I=jmjrj2r2dm is the Moment of inertia.

▭ parallel axis theorem Iparallelaxis=Icenterofmass+md2

▭ Restricting ourselves to fixed axis rotation, r is the distance from a fixed axis; the sum of torques, τ=r×F requires only one component, summed as τnet=τj=rjFj=Iα.

▭ Work done by a torque is dW=(τj)dθ. The Work-energy theorem is KBKA=WAB=θAθB(jτj)dθ.

▭ Rotational power =P=τω.

I=∫r2dm for a hoop, disk, cylinder, box, plate, rod, and spherical shell or solid can be found from this figure.

<section end=Fixed-Axis_Rotation/> <section begin=Angular_Momentum/>

Angular_Momentum

Center of mass (rolling without slip) dCM=rθ, vCM=rω,aMC=Rα=mgsinθ/m+(Icm/r2)

▭ Total angular momentum and net torque: dL/dt=τ =l1+l2+...; l=r×p for a single particle. Ltotal=Iω.

▭ Precession of a top ωP=mrg/(Iω). <section end=Angular_Momentum/> <section begin=Static_Equilibrium_and_Elasticity/>

Static_Equilibrium_and_Elasticity

Equilibrium Fj=0=τj. Stress = elastic modulus · strain (analogous to Force = k · Δ x )

▭ (Young's , Bulk , Shear) modulus: (FA=YΔLL0,Δp=BΔVV0,FA=SΔxL0) <section end=Static_Equilibrium_and_Elasticity/> <section begin=Gravitation/>

Gravitation

Newton's law of gravity F12=Gm1m2r2r^12

▭ Earth's gravity g=GMEr2

▭ Gravitational PE beyond Earth U=GMEmr

▭ Energy conservation 12mv12GMmr1=12mv22GMmr2

▭ Escape velocity vesc=2GMEr

▭ Orbital speed vorbit=GMEr

▭ Orbital period T=2πr3GME

▭ Energy in circular orbit E=K+U=GmME2r

▭ Conic section αr=1+ecosθ

▭ Kepler's third law T2=4π2GMa3

▭ Schwarzschild radius RS=2GMc2 <section end=Gravitation/> <section begin=Fluid_Mechanics/>

Fluid_Mechanics

Mass density ρ=m/VPressure P=F/A

Pressure is the weight per unit area of the fluid above a point.

Template:SpacesB=ρflu(AΔh)g and ▭ W=ρobj(AΔh)g=Mobjg

Pressure vs depth/height (constant density)p=po+ρghdp/dy=ρg

Absolute vs gauge pressure pabs=pg+patm

Pascal's principle: F/A depends only on depth, not on orientation of A.

Volume flow rate Q=dV/dt

Continuity equation ρ1A1v1=ρ2A2v2A1v1=A2v2 if ρ=const.

Bernoulli's principle p1+12ρv12+ρgy1=p2+12ρv22+ρgy2

Viscosity η=FLvA where F is the force applied by a fluid that is moving along a distance L from an area A.

Poiseuille equation p2p1=QR where R=8ηπr4 is "resistance" for a pipe of radius r and length .

<section end=Fluid_Mechanics/> <section begin=Oscillations/>

Oscillations

Frequency f, period T and angular frequency ω: fT=1,ωT=2π

▭ Simple harmonic motion x(t)=Acos(ωt+ϕ), v(t)=Aωsin(ωt+ϕ), a(t)=Aω2cos(ωt+ϕ) also models the x-component of uniform circular motion.

▭ For (A,ω) positive: xmax=A,vmax=Aω,amax=Aω2

▭ Mass-spring ω=2π/T=2πf=k/m;

▭ Energy ETot=12kx2+12mv2=12mvmax2=12kxmax2v=±km(A2x2)

▭ Simple pendulum ωg/L

▭ Physical pendulum τ=MgLsinθMgLθω=mgL/I and L measures from pivot to CM.

▭ Torsional pendulum τ=κθω=I/κ

▭ Damped harmonic oscillator md2xdt2=kxbdxdtx=A0eb2mtcos(ωt+ϕ) where ω=ω02(b2m)2 and ω0=km.

▭ Forced harmonic oscillator (MIT wiki!) md2xdt2=kxbdxdt+F0sinωtx=Aeb2mtcos(ωt+ϕ) where A=F0m2(ωω0)2+b2ω2. <section end=Oscillations/> <section begin=Waves/>

Waves

Wave speed (phase velocity) v=λ/T=λf=ω/k where k=2π/λ is wavenumber.

▭ Wave and pulse speed of a stretched string =FT/μ where FT is tension and μ is linear mass density.

▭ Speed of a compression wave in a fluid v=B/ρ.

▭ Periodic travelling wave y(x,t)=Asin(kxωt) travels in the positive/negative direction. The phase is kxωt and the amplitude is A.

▭ The resultant of two waves with identical amplitude and frequency yR(x,t)=[2Acos(ϕ2)]sin(kxωt+ϕ2) where ϕ is the phase shift.

▭ This wave equation 2y/t2=vw22y/x2 is linear in y=y(x,t)

▭ Power in a tranverse stretched string wave Pave=12μA2ω2v.

▭ Intensity of a plane wave I=P/AP4πr2 in a spherical wave.

▭ Standing wave y(x,t)=Asin(kx)cos(ωt+ϕ) For symmetric boundary conditions λn=2π/kn=2πL n=1,2,3,..., or equivalently f=nf1 where f1=v2L is the fundamental frequency. <section end=Waves/> <section begin=Sound/>

Sound

Pressure and displacement fluctuations in a sound wave P=ΔPmaxsin(kxωt+ϕ) and s=smaxcos(kxωt+ϕ)

▭ Speed of sound in a fluid v=fλ=β/ρ, ▭ in a solid Y/ρ, ▭ in an idal gas γRT/M, ▭ in air 331msTK273K=331ms1+TC273oC

▭ Decreasing intensity spherical wave I2=I1(r1r2)2

▭ Sound intensity I=PA=(ΔPmax)22ρv ▭  ...level 10log10I/I0

▭ Resonance tube One end closed: λn=4nL, fn=nv4L, n=1,3,5,... ▭ Both ends open: λn=2nL, fn=nv2L, n=1,2,3,...

▭ Beat frequency fbeat=|f2f1|


▭ (nonrelativisticDoppler effect fo=fsv±vovvs where v is the speed of sound, vs is the velocity of the source, and vo is the velocity of the observer.

▭ Angle of shock wave sinθ=v/vs=1/M where v is the speed of sound, vs is the speed of the source, and M is the Mach number. <section end=Sound/>