Pauli matrices

From testwiki
Jump to navigation Jump to search
The following is modified from w:Pauli matrices.

In physics, the Pauli matrices are a set of 2 × 2 complex Hermitian and unitary matrices.[1] Usually indicated by the Greek letter "sigma" (σ), they are occasionally denoted with a "tau" (τ) when used in connection with isospin symmetries. They are:

σ1=σx=(0110)
σ2=σy=(0ii0)
σ3=σz=(1001)

The name refers to Wolfgang Pauli.

The real (hence also, complex) subalgebra generated by the σi (that is, the set of real or complex linear combinations of all the elements which can be built up as products of Pauli matrices) is the full set M2(C) of complex 2×2 matrices. The σi can also be seen as generating the real Clifford algebra of the real quadratic form with signature (3,0): this shows that this Clifford algebra Cℓ3,0(R) is isomorphic to M2(C), with the Pauli matrices providing an explicit isomorphism. (In particular, the Pauli matrices define a faithful representation of the real Clifford algebra Cℓ3,0(R) on the complex vector space C2 of dimension 2.)

Algebraic properties

σ12=σ22=σ32=iσ1σ2σ3=(1001)=I

where I is the identity matrix, i.e. the matrices are involutory.

det(σi)=1Tr(σi)=0for i=1,2,3.

From above we can deduce that the eigenvalues of each σi are ±1.

  • Together with the identity matrix I (which is sometimes written as σ0), the Pauli matrices form an orthogonal basis, in the sense of Hilbert-Schmidt, for the real Hilbert space of 2 × 2 complex Hermitian matrices, or the complex Hilbert space of all 2 × 2 matrices.

Pauli vector

The Pauli vector is defined by

σ=σ1x^+σ2y^+σ3z^

and provides a mapping mechanism from a vector basis to a Pauli matrix basis as follows

aσ=(aix^i)(σjx^j)=aiσjx^ix^j=aiσi

(summation over indices implied). Note that in this vector dotted with Pauli vector operation the Pauli matrices are treated in a scalar like fashion, commuting with the vector basis elements.

Commutation relations

The Pauli matrices obey the following commutation and anticommutation relations:

[σa,σb]=2iεabcσc{σa,σb}=2δabI

where εabc is the Levi-Civita symbol, δab is the Kronecker delta, and I is the identity matrix.

The above two relations are equivalent to:

σaσb=δabI+icεabcσc.

For example,

σ1σ2=iσ3,σ2σ3=iσ1,σ2σ1=iσ3,σ1σ1=I.

and the summary equation for the commutation relations can be used to prove

(aσ)(bσ)=(ab)I+iσ(a×b)(1)
(as long as the vectors a and b commute with the pauli matrices)

as well as

ei(aσ)=cosa+i(n^σ)sina(2)

for a=an^.

Completeness relation

An alternative notation that is commonly used for the Pauli matrices is to write the vector index i in the superscript, and the matrix indices as subscripts, so that the element in row α and column β of the ith Pauli matrix is σαβi.

In this notation, the completeness relation for the Pauli matrices can be written

σσ=iσαβiσγδi=2δαδδβγδαβδγδ.

Relation with the permutation operator

Let Pij be the permutation (transposition, actually) between two spins σi and σj living in the tensor product space 22, Pij|σiσj=|σjσi. This operator can be written as Pij=12(σiσj+1), as the reader can easily verify.

SU(2)

The matrix group SU(2) is a Lie group, and its Lie algebra is the set of the anti-Hermitian 2×2 matrices with trace 0. Direct calculation shows that the Lie algebra su(2) is the 3 dimensional real algebra spanned by the set {iσj}. In symbols,

su(2)=span{iσ1,iσ2,iσ3}.

As a result, iσjs can be seen as infinitesimal generators of SU(2).

A Cartan decomposition of SU(2)

This relationship between the Pauli matrices and SU(2) can be explored further, as can be seen from the following simple example. We can write

su(2)=span{iσ2}span{iσ1,iσ3}.

We put

𝔨=span{iσ3},

and

𝔭=span{iσ1,iσ2}.

Using the algebraic identities listed in the previous section, it can be verified that 𝔨 and 𝔭 form a Cartan pair of the Lie algebra SU(2). Furthermore,

𝔞=span{iσ2}

is a maximal abelian subalgebra of 𝔭. Now, a version of Cartan decomposition states that any element U in the Lie group SU(2) can be expressed in the form

U=ek1eaek2 where k1,k2𝔨 and a𝔞.

In other words, any unitary U of determinant 1 is of the form

U=eiασ3eiβσ2eiγσ3

for some real numbers α, β, and γ.

Extending to unitary matrices gives that any unitary 2 × 2 U is of the form

U=eiδeiασ3eiβσ2eiγσ3

where the additional parameter δ is also real (also compare with Leonhardt 2010, eq 5.22, pg. 99)

SO(3)

The Lie algebra su(2) is isomorphic to the Lie algebra so(3), which corresponds to the Lie group SO(3), the group of rotations in three-dimensional space. In other words, one can say that iσj's are a realization (and, in fact, the lowest-dimensional realization) of infinitesimal rotations in three-dimensional space. However, even though su(2) and so(3) are isomorphic as Lie algebras, SU(2) and SO(3) are not isomorphic as Lie groups. SU(2) is actually a double cover of SO(3), meaning that there is a two-to-one homomorphism from SU(2) to SO(3).

Quaternions

The real linear span of {I,iσ1,iσ2,iσ3} is isomorphic to the real algebra of quaternions H. The isomorphism from H to this set is given by the following map (notice that Pauli matrices are in reversed order):[2]

1I,iiσ3,jiσ2,kiσ1.

As the quaternions of unit norm is group-isomorphic to SU(2), this gives yet another way of describing SU(2) via the Pauli matrices. The two-to-one homomorphism from SU(2) to SO(3) can also be explicitly given in terms of the Pauli matrices in this formulation.

Quaternions form a division algebra—every non-zero element has an inverse—whereas Pauli matrices do not. For a quaternionic version of the algebra generated by Pauli matrices see biquaternions, which is a venerable algebra of eight real dimensions.

Physics

Quantum mechanics

  • In quantum mechanics, each Pauli matrix represents an observable describing the spin of a spin ½ particle in the three spatial directions. Also, as an immediate consequence of the Cartan decomposition mentioned above, iσj are the generators of rotation acting on non-relativistic particles with spin ½. The state of the particles are represented as two-component spinors. An interesting property of spin ½ particles is that they must be rotated by an angle of 4π in order to return to their original configuration. This is due to the two-to-one correspondence between SU(2) and SO(3) mentioned above, and the fact that, although one visualizes spin up/down as the north/south pole on the 2-sphere S2, they are actually represented by orthogonal vectors in the two dimensional complex Hilbert space.
  • For a spin Template:Fraction particle, the spin operator is given by 𝐉=2σ. The Pauli matrices can be generalized to describe higher spin systems in three spatial dimensions. The spin matrices for spin 1 and spin 32 are given below:

j=1:

Jx=2(010101010)
Jy=2(0i0i0i0i0)
Jz=(100000001)

j=32:

Jx=2(0300302002030030)
Jy=2(0i300i302i002i0i300i30)
Jz=2(3000010000100003).
  • Also useful in the quantum mechanics of multiparticle systems, the general Pauli group Gn is defined to consist of all n-fold tensor products of Pauli matrices.
  • The fact that any 2 × 2 complex Hermitian matrices can be expressed in terms of the identity matrix and the Pauli matrices also leads to the Bloch sphere representation of 2 × 2 mixed states (2 × 2 positive semidefinite matrices with trace 1). This can be seen by simply first writing a Hermitian matrix as a real linear combination of {σ0, σ1, σ2, σ3} then impose the positive semidefinite and trace 1 assumptions.

Quantum information

  • In quantum information, single-qubit quantum gates are 2 × 2 unitary matrices. The Pauli matrices are some of the most important single-qubit operations. In that context, the Cartan decomposition given above is called the Z-Y decomposition of a single-qubit gate. Choosing a different Cartan pair gives a similar X-Y decomposition of a single-qubit gate.

See also

Notes

References