Physics/A/String vibration/Nonlinear

From testwiki
Jump to navigation Jump to search

Template:String vibration

If you don't understand this animated gif, look at the next figure
The first four terms of the Fourier series of a square wave, ψ(x)=4πsin(πx) +43πsin(3πx) +45πsin(5πx) +47πsin(7πx)+=odd n=14nπsin(nπx).

Define κT=(1a)κsκs

mξ¨=κsξ+aκsηη, and mη¨=κTη.

Transverse standing wave: ω/k=κT/m

η=Asin(kx)sin(ωt)

ηη=k3A2sin(kx)cos(kx)sin2(ωt)

Define =m2/t2κs2/X2

Second order differential equation with one variable: https://openstax.org/books/calculus-volume-3/pages/7-2-nonhomogeneous-linear-equations

ξ=k3A2sin(kx)cos(kx)sin2(ωt)

ξ=ξp(X,t)+ξh(X,t) where ξh is the solution to the homogeneous equation, i.e., solution to ξh=0

Link to wikipedia:Fourier series?

Employ two identities:

sin(kX)cos(kX)=sin(2kX)2 and sin2(ωt)=1cos(2ωt)2

ξ=aκsk3A2sin(2kX)(1cos(2ωt)4)=aκsk3A24sin(2kX)+aκsk3A24sin(2kX)cos(2ωt)

To find a particular solution, ξp, to (?) we first consider two different inhomogeneous equations:

ξ1=aκsk3A24sin(2kX)

ξ2=aκsk3A24sin(2kX)cos(2ωt)

NOW

Recall κT=(1a)κs => a=κsκTκs

If ξ1 is proportional to sin(2kX), then ξ1=4k2κsξ1, and: ξ1=aκskA216κTsin(2kX) => ξ1=kA216(1κTκs)sin(2kX)

If ξ2 is proportional to sin(2kX)cos(2ωt), then ξ2=(4mω2+4k2κs)ξ2 and:ξ2=aκs16k3A2k2κsmω2sin(2kX)cos(2ωt) =ξ2=aκskA2161κsmω2/k2sin(2kX)cos(2ωt) =>ξ2=aκskA2161κsκTsin(2kX)cos(2ωt) =>ξ2=kA216sin(2kX)cos(2ωt). Now use cos(2ωt)=12sin2ωt).

ξ1=kA216(12sin2ωt)sin(2kX)

By the linearity of the operator , we see that a particular solution to (?) is the sum of ξp=ξ1+ξ2:

ξ1=kA28(sin2(ωt)+κT2κs)sin(2kX)

In these units the speed of a {transverse, longitudinal} wave is {cT=κT/m,cs=κs/m}. This permits us to write an expression that does not depend on the choice of units.[1] Relating the wavenumber of the lowest order mode to string length by kL0=π:

ξ1=πA28L0(sin2(ωt)+cT22cs2)sin(2kX)


xx<math> <math></math>

Other identities

wikipedia:special:permalink/1017302768

sin(2θ)=2sinθcosθTemplate:Spaces*Template:Spaces cos(2θ)=cos2θsin2θ=2cos2θ1=12sin2θTemplate:Spaces*Template:Spaces sin2θ=1cos(2θ)2Template:Spaces*Template:Spaces cos2θ=1+cos(2θ)2Template:Spaces*Template:Spaces sin(α±β)=sinαcosβ±cosαsinβTemplate:Spaces*Template:Spaces cos(α±β)=cosαcosβsinαsinβTemplate:Spaces*Template:Spaces 2sinθcosφ=sin(θ+φ)+sin(θφ)Template:Spaces*Template:Spaces 2cosθsinφ=sin(θ+φ)sin(θφ)Template:Spaces*Template:Spaces


After modifying an equation from Wikipedia:

sinαcosβ=eiαeiα2ieiβ+eiβ2=12ei(α+β)+ei(αβ)ei(α+β)ei(αβ)2i=12(ei(α+β)ei(α+β)2isin(α+β)+ei(αβ)ei(αβ)2isin(αβ)).

  1. See David R Rowland 2011 Eur. J. Phys. 32 1475, equation 11