Physics Formulae/Electric Circuits Formulae

From testwiki
Jump to navigation Jump to search

Lead Article: Tables of Physics Formulae


This article is a summary of the laws, principles, defining quantities, and useful formulae in the analysis of Electric Circuits, Electronics.

DC Quantities

Quantity (Common Name/s) (Common) Symbol/s Defining Equation SI Units Dimension
Electrical Resistance R R=V/I Ω = V A-1 = J s C-2 [M][L]2 [T]-3 [I]-2
Resistivity, Scalar ρ ρ=RAl Ω m [M]2 [L]2 [T]-3 [I]-2
Resistivity Temperature Coefficient,

Linear Temperature Dependance

α ρρ0=ρ0α(TT0) K-1 [Θ]-1
Terminal Voltage for

Power Supply

Vter V = J C-1 [M] [L]2 [T]-3 [I]-1
Load Voltage for Circuit Vload V = J C-1 [M] [L]2 [T]-3 [I]-1
Internal Resistance of

Power Supply

Rint Rint=VterI Ω = V A-1 = J s C-2 [M][L]2 [T]-3 [I]-2
Load Resistance of

Circuit

Rext Rext=VloadI Ω = V A-1 = J s C-2 [M][L]2 [T]-3 [I]-2
Electromotive Force (emf), Voltage across

entire circuit including power supply, external

components and conductors

=Vter+Vload V = J C-1 [M] [L]2 [T]-3 [I]-1
Electrical Conductance G G=1/R S = Ω-1 [T]3 [I]2 [M]-1 [L]-2
Electrical Conductivity, Scalar σ σ=1/ρ Ω-1 m-1 [I]2 [T]3 [M]-2 [L]-2
Electrical Conductivity, Tensor σ,σij σij( σ11σ12σ13 σ21σ22σ23 σ31σ32σ33) Ω-1 m-1 [I]2 [T]3 [M]-2 [L]-2
Electrical Power P P=VI W = J s-1 [M] [L]2 [T]-3
emf Power P Pemf=I W = J s-1 [M] [L]2 [T]-3
Resistor Power Dissipation P P=I2R=V2/R W = J s-1 [M] [L]2 [T]-3
Resistors in Series Rnet=iRi
Resistors in Parallel 1Rnet=i1Ri
Ohm's Law Scalar form

V=IR

Vector Form

𝐉=σ𝐄

Tensor Form, general applies to all points in a conductor

𝐉i=σij𝐄j

Kirchoff's Laws emf loop rule around any closed circuit

iVi=iIiRi=0

Current law at junctions

Iin=Iout

AC Quantitites

Quantity (Common Name/s) Common Name/s Quantity (Common Name/s) Quantity (Common Name/s) Quantity (Common Name/s)
Resistive Load Voltage VR VR=IRR V = J C-1 [M] [L]2 [T]-3 [I]-1
Capacitive Load Voltage VC VC=ICXC V = J C-1 [M] [L]2 [T]-3 [I]-1
Inductive Load Voltage VL VL=ILXL V = J C-1 [M] [L]2 [T]-3 [I]-1
Capacitive Reactance XC XC=1ωdC Ω-1 m-1 [I]2 [T]3 [M]-2 [L]-2
Inductive Reactance XL XL=ωdL Ω-1 m-1 [I]2 [T]3 [M]-2 [L]-2
AC Impedance Z V=IZ

Z=R2(XLXC)2

Ω-1 m-1 [I]2 [T]3 [M]-2 [L]-2
Phase Constant ϕ tanϕ=XLXCR dimensionless dimensionless
AC Circuit Resonant

Pulsatance

ωres ωd=ωres=ω=1LC s-1 [T]-1
AC Peak Current I0 I0=Irms2 A [I]
AC Root Mean

Square Current

Irms,I Irms=1T0T[I(t)]2dt A [I]
AC Peak Voltage V0 V0=Vrms2 V = J C-1 [M] [L]2 [T]-3 [I]-1
AC Root Mean

Square Voltage

Vrms,V Vrms=1T0T[V(t)]2dt V = J C-1 [M] [L]2 [T]-3 [I]-1
AC emf, Root Mean Square rms, rms=m/2 V = J C-1 [M] [L]2 [T]-3 [I]-1
AC Average Power P P=Irmscosϕ W = J s-1 [M] [L]2 [T]-3
Capacitive Time Constant τC τC=RC s [T]
Inductive Time Constant τL τL=L/R s [T]
RC Circuits RC Circuit Equation

Rq+C1q=

RC Circuit Capacitor Charging

q=C(1et/RC)

RL Circuits RL Circuit Equation

Li+Ri=

RL Circuit Current Rise

I=R(1et/τL)

RL Circuit, Current Fall

I=Ret/τL=I0et/τL

LC Circuit LC Circuit Equation

Lq+q/C=

LC Circuit Resonance

ω=1/LC

LC Circuit Charge

q=Qcos(ωt+ϕ)

LC Circuit Current

I=ωQsin(ωt+ϕ)

LC Circuit electrical potential energy

UE=q2/2C=Q2cos2(ωt+ϕ)/2C

LC circuit magnetic potential energy

UB=Q2sin2(ωt+ϕ)/2C

RLC Circuits RLC Circuit Equation

Lq+Rq+C1q=

RLC Circuit Charge

q=QeTRt/2Lcos(ωt+ϕ)

Template:CourseCat