Physics equations/Capacitors

From testwiki
Jump to navigation Jump to search

Capacitance

from https://en.wikipedia.org/w/index.php?title=Capacitance&oldid=581221622

Capacitance is the ability of a body to store an electrical charge. Any object that can be electrically charged exhibits capacitance. We shall consider capacitors that are linear, meaning that there is direct proportionality between charge, q, and voltage, V {where is the electric potential):

q=CV.

The SI unit of capacitance is the farad (symbol: F), named after the English physicist Michael Faraday. The most common subunits of capacitance in use today are the microfarad (µF), nanofarad (nF), picofarad (pF), and, in microcircuits, femtofarad (fF). However, specially made supercapacitors can be much larger (as much as hundreds of farads), and parasitic capacitive elements can be less than a femtofarad.

The energy (measured in joules) stored in a capacitor is equal to the work done to charge it. Consider a capacitor of capacitance C, holding a charge +q on one plate and −q on the other. Moving a small element of charge dq from one plate to the other against the potential difference Template:Nowrap requires the work dW:

dW=Vdq

where W is the work measured in joules, q is the charge measured in coulombs and C is the capacitance, measured in farads. This can be integrated to yield a final stored energy equal to:

Vdq=12Q2C=12QV=12CV2=Wstored.

The energy stored in a capacitor is found by integrating this equation.

Problem: Perform this integration. Template:Hidden begin Starting with an uncharged capacitance (Template:Nowrap) and moving charge from one plate to the other until the plates have charge +Q and −Q requires the work W:

dWcharging=0QVdq=0QqCdq=12Q2C.

Using Q =CV (for the fully charged capacitor) we obtain the the other forms by substitution: ½Q2/C = ½QV =½CV2. Template:Hidden end

Capacitances of simple systems

Template:Hidden begin

Capacitance of simple systems
Type Capacitance Comment
Parallel-plate capacitor εA/d

ε: Permittivity

Coaxial cable 2πεlln(R2/R1)

ε: Permittivity

Pair of parallel wires πεlarcosh(d2a)=πεlln(d2a+d24a21)
Concentric spheres 4πε1R11R2

ε: Permittivity

Two spheres,
equal radius
=2πεa{1+12D+14D2+18D3+O(1D4)}
=2πεa{ln2+γ12ln(da2)+O(da2)}
a: Radius
d: Distance, d > 2a
D = d/2a
γ: Euler's constant
Sphere 4πεa a: Radius
Circular disc 8εa a: Radius
Thin straight wire,
finite length
2πεlΛ{1+1Λ(1ln2)+O(1Λ2)} a: Wire radius
l: Length
Λ: ln(l/a)

Template:Hidden end

Problems

Problem: Show that the Capacitance of a parallel plate capacitor is εA/d, where A is plate area and d is the distance between the plates. Template:Hidden begin This solution requires that you already "know" a few facts about the system, which we shall state without proof.

  1. There is no net charge on the plates (with positive Q on one plate and negative Q on the other).
  2. The charge is uniformly distributed over each plate.
  3. The electric field exists only between the plates.

Use Gauss' Law to find the electric field

SEdA=1ε0Qenclosed=EA

This equation establishes that V=Ed, where E and d is the gap between the plates:

abEd=ϕ(b)ϕ(a)=V

(It is customary to denote the electric potential, ϕ(b)ϕ(a)V, as the "voltage", Q=CV. "voltage". Use the definition of capactance, Q=CV, to obtain,

C=εA/d

Template:Hidden end

Problem: Show that the capacitance of an isolated sphere is 4πεa, where a is radius. Template:Hidden begin By Gauss' Law, the electric field is found by solving

SEdA=4πa2E=1ε0Qenclosed

After solving this for E, we integrate to find the potential on the surface of a sphere of radius a.

V=aEd=aE(r)dr=aQ4πεr2dr=Q4πεa

Use the definition of capacitance, Q=CV, to obtain,

C=4πεa

Template:Hidden end

Problem: Show that if the outer and inner radii of two concentric sphere is, R2>R1, the capacitance is

C=4πε1R11R2.

Problem: Show that if the length of a long coaxial cable is, ,l, and the inner and outer radii are R1 and R2, respectively, then the capacitance is,

C=2πεlln(R2/R1)

References