PlanetPhysics/Algebraic Topology
Algebraic topology
Introduction
Algebraic topology (AT) utilizes [[../CoIntersections/|algebraic]] approaches to solve [[../CoIntersections/|topological]] problems, such as the [[../TrivialGroupoid/|classification]] of surfaces, proving [[../TrivialGroupoid/|duality]] [[../Formula/|theorems]] for [[../NoncommutativeGeometry4/|manifolds]] and approximation theorems for topological spaces. A central problem in algebraic topology is to find algebraic invariants of topological spaces, which is usually carried out by means of [[../ThinEquivalence/|homotopy]], homology and [[../CohomologyTheoryOnCWComplexes/|cohomology groups]]. There are close connections between algebraic topology, Algebraic Geometry (AG), [[../NAQAT2/|non-commutative geometry]] and, of course, its most recent development-- non-Abelian Algebraic Topology (NAAT). On the other hand, there are also close ties between algebraic geometry and number theory.
Outline
- Homotopy theory and [[../HomotopyCategory/|fundamental groups]] #Topology and [[../QuantumOperatorAlgebra5/|groupoids]]; van Kampen theorem
- Homology and [[../NoncommutativeGeometry4/|cohomology theories]]
- Duality
- [[../TrivialGroupoid/|category theory applications]] in algebraic topology
- [[../IndexOfCategories/|indexes of category]], [[../TrivialGroupoid/|functors]] and [[../VariableCategory2/|natural transformations]]
- Grothendieck's Descent theory
- `[[../IsomorphismClass/|Anabelian Geometry]]' #Categorical Galois theory
- [[../2Groupoid2/|higher dimensional algebra]] ([[../2Groupoid2/|HDA]])
- [[../NonAbelianQuantumAlgebraicTopology3/|Non-Abelian Quantum Algebraic Topology]] (NAQAT)
- Quantum Geometry
- Non-Abelian algebraic topology (NAAT)
Homotopy theory and fundamental groups
- Homotopy
- Fundamental group of a space
- Fundamental theorems
- [[../VanKampenTheorems/|Van Kampen theorem]] #Whitehead [[../TrivialGroupoid/|groups]], torsion and towers
- Postnikov towers
Topology and Groupoids
- Topology definition, axioms and basic [[../PreciseIdea/|concepts]] #Fundamental groupoid
- [[../GroupoidHomomorphism2/|topological groupoid]] #van Kampen theorem for groupoids
- Groupoid [[../Pushout/|pushout]] theorem
- [[../WeakHomotopy/|double groupoids]] and crossed modules
- new4
Homology theory
- [[../ExtendedHurewiczFundamentalTheorem/|homology group]] #Homology sequence
- Homology complex
- new4
Cohomology theory
- Cohomology group
- Cohomology sequence
- DeRham cohomology
- new4
Duality in algebraic topology and category theory
- Tanaka-Krein duality
- Grothendieck duality
- [[../TrivialGroupoid/|categorical duality]] #[[../DualityAndTriality/|tangled duality]] #DA5
- DA6
- DA7
Category theory applications
- [[../AbelianCategory2/|abelian categories]]
- Topological [[../Cod/|category]] #Fundamental groupoid functor
- Categorical Galois theory
- Non-Abelian algebraic topology
- Group category
- [[../GroupoidCategory3/|groupoid category]] # category
- [[../GrothendieckTopos/|topos]] and topoi axioms
- [[../ManyValuedLogicSubobjectClassifiers/|generalized toposes]] #Categorical logic and algebraic topology
- [[../MetaTheorems/|meta-theorems]] #Duality between spaces and algebras
Index of categories
The following is a listing of categories relevant to algebraic topology:
- Algebraic categories
- Topological category
- Category of sets, Set
- Category of topological spaces
- [[../CategoryOfRiemannianManifolds/|category of Riemannian manifolds]] #Category of CW-complexes
- Category of Hausdorff spaces
- [[../CategoryOfBorelSpaces/|category of Borel spaces]] #Category of CR-complexes
- Category of [[../Cod/|graphs]] #Category of [[../SimplicialCWComplex/|spin networks]] #Category of groups
- Galois category
- Category of fundamental groups
- Category of [[../PolishGroup/|Polish groups]]
- Groupoid category
- [[../GroupoidCategory4/|category of groupoids]] (or groupoid category)
- [[../CategoryOfBorelGroupoids/|category of Borel groupoids]] #Category of fundamental groupoids
- Category of functors (or [[../TrivialGroupoid/|functor category]])
- Double groupoid category
- [[../HorizontalIdentities/|double category]] #[[../CategoryOfHilbertSpaces/|category of Hilbert spaces]] #[[../CategoryOfQuantumAutomata/|category of quantum automata]] #[[../RCategory/|R-category]] #Category of [[../Algebroids/|algebroids]] #Category of [[../GeneralizedSuperalgebras/|double algebroids]]
- Category of [[../ContinuousGroupoidHomomorphism/|dynamical systems]]
Index of functors
The following is a contributed listing of functors:
- Covariant functors
- Contravariant functors
- [[../SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence/|adjoint functors]]
- [[../PreadditiveFunctor/|preadditive functors]]
- Additive functor
- [[../CategoryOfLogicAlgebras/|representable functors]]
- Fundamental groupoid functor
- Forgetful functors
- Grothendieck group functor
- Exact functor
- Multi-functor
- [[../RightAdjointFunctor/|section functors]]
- NT2
- NT3
Index of natural transformations
The following is a contributed listing of natural transformations:
- [[../IsomorphismClass/|natural equivalence]] #Natural transformations in a [[../2Category/|2-category]] #NT3
- NT1
- NT2
- NT3
Grothendieck proposals
- Esquisse d'un Programme
\item Pursuing Stacks
- S2
- S3
- S4
Descent theory
- D1
- D2
- D3
- D4
Higher dimensional algebra (HDA)
- Categorical groups
- Double groupoids
- Double algebroids
- Bi-algebroids
- -algebroid
- -category
- -category
- [[../SuperCategory6/|super-category]] #weak [[../InfinityGroupoid/|n-categories]] #Bi-dimensional Geometry
- [[../NoncommutativeGeometry/|Noncommutative geometry]]
- Higher-Homotopy theories
- Higher-Homotopy Generalized van Kampen Theorem (HGvKT)
- H1
- H2
- H3
- H4
Axioms of cohomology theory
- A1
- A2
- A3
- A4
- A5
- A6
- A7
Axioms of homology theory
- A1
- A2
- A3
- A4
- A5
- A6
Non-Abelian Algebraic Topology (NAAT)
- An overview of Nonabelian Algebraic Topology
- [[../AbelianCategory3/|non-Abelian categories]]
- [[../AbelianCategory3/|non-commutative]] groupoids (including non-Abelian groups)
- Generalized van Kampen theorems
- [[../NoncommutativeGeometry/|Noncommutative Geometry (NCG)]]
- Non-commutative `spaces' of [[../Bijective/|functions]] #[[../NonAbelianAlgebraicTopology5/|Non-Abelian Algebraic Topology textbook]]
References for NAAT
- [1] M. Alp and C. D. Wensley, XMod, Crossed modules and Cat1--groups: a GAP4 package,(2004) (http://www.maths.bangor.ac.uk/chda/)
- [2] R. Brown, Elements of Modern Topology, McGraw Hill, Maidenhead, 1968. second edition as Topology: a geometric account of general topology, homotopy [[../Bijective/|types]], and the fundamental groupoid, Ellis Horwood, Chichester (1988) 460 pp.
- [3] R. Brown, `Higher dimensional group theory'
- [4] R. Brown[[../SingularComplexOfASpace/|.`crossed complexes]] and homotopy groupoids as non commutative tools for higher dimensional local--to--global problems', Proceedings of the [[../CosmologicalConstant/|fields]] Institute Workshop on Categorical Structures for Descent and Galois Theory, Hopf Algebras and Semiabelian Categories, September 23--28, 2002, Contemp. Math. (2004). (to appear), UWB Math Preprint
02.26[[../LebesgueMeasure/|.pdf]] (30 pp.)
- [5] R. Brown and P. J. Higgins, On the connection between the second relative [[../ExtendedHurewiczFundamentalTheorem/|homotopy groups]] of some related spaces, Proc.London Math. Soc., (3) 36 (1978) 193--212.
- [6] R. Brown and R. Sivera, `Nonabelian algebraic topology', (in preparation) Part I is downloadable from
(http://www.bangor.ac.uk/~mas010/nonab-a-t.html)
- [7] R. Brown and C. B. Spencer, Double groupoids and crossed modules, Cahiers Top. G'/eom.Diff., 17 (1976) 343--362.
- [8] R. Brown and C. D.Wensley, `[[../LQG2/|computation]] and homotopical applications of induced crossed modules', J. Symbolic Computation, 35 (2003) 59--72.
- [9] The GAP Group, 2004, GAP --Groups, [[../RecursiveFunction/|algorithms]], and [[../ComputerProgram/|programming]], version 4.4 , Technical report, (http://www.gap-system.org)
- [10] A. Grothendieck, `Pursuing [[../GrothendiecksEsquisseDunProgramme/|stacks',]] 600p, 1983, distributed from Bangor. Now being edited by G. Maltsiniotis for the SMF.
- [11] P. J. Higgins, 1971, Categories and Groupoids,
Van Nostrand, New York. Reprint Series, Theory and Appl. Categories (to appear).
- [12] V. Sharko, 1993, Functions on manifolds: algebraic and topological aspects, number 131 in Translations of Mathematical Monographs, American Mathematical Society.
- new1
- new2
- new3
- new4
13
- new1
- new2
- new3
- new4
14
References
Bibliography on Category theory, AT and QAT
Textbooks and Expositions:
- A Textbook1
- A Textbook2
- A Textbook3
- A Textbook4
- A Textbook5
- A Textbook6
- A Textbook7
- A Textbook8
- A Textbook9
- A Textbook10
- A Textbook11
- A Textbook12
- A Textbook13
- new1
- new2
- new3
- new4
Algebraic Topology and Groupoids
- Ronald Brown: Topology and Groupoids, BookSurge LLC (2006).
- Ronald Brown R, P.J. Higgins, and R. Sivera.: "Non-Abelian algebraic topology" .
http://www. bangor.ac.uk/mas010/nonab-a-t.html; http://www.bangor.ac.uk/mas010/nonab-t/partI010604.pdf , Springer: in press (2010).
- R. Brown and J.-L. Loday: Homotopical excision, and [[../ModuleAlgebraic/|Hurewicz theorems]], for n-cubes of spaces, Proc. London Math. Soc., 54:(3), 176--192, (1987).
- R. Brown and J.-L. Loday: Van Kampen Theorems for [[../TrivialGroupoid/|diagrams]] of spaces, Topology, 26: 311-337 (1987).
- R. Brown and G. H. Mosa: Double algebroids and crossed modules of algebroids, University of Wales-Bangor, Maths Preprint, 1986.
- R. Brown and C.B. Spencer: Double groupoids and crossed modules, Cahiers Top. G\'eom. Diff. 17 (1976), 343--362.
- Madalina (Ruxi) Buneci.: [[../GroupoidRepresentations/|groupoid representations]]., Ed. Mirton: Timisoara (2003).
- Allain Connes: [[../NoncommutativeGeometry4/|noncommutative geometry]], Academic Press 1994.
Non--Abelian Algebraic Topology and Higher Dimensional Algebra
- Ronald Brown: [[../ModuleAlgebraic/|non--Abelian algebraic topology]], vols. I and II. 2010. (in press: Springer): Nonabelian Algebraic Topology:filtered spaces, crossed complexes, cubical higher homotopy groupoids