PlanetPhysics/Divergence

From testwiki
Jump to navigation Jump to search

Divergence

The divergence of a vector field is defined as

𝐕=Vxx+Vyy+Vzz

This is easily seen from the definition of the [[../DotProduct/|dot product]] and that of the del [[../QuantumSpinNetworkFunctor2/|operator]] 𝐀𝐁=AxBx+AyBy+AzBz =x𝐒^+y𝐣^+z𝐳^

carrying out the dot product with 𝐕 then gives (1).

Physical Meaning

(this [[../IsomorphicObjectsUnderAnIsomorphism/|section]] is a [[../Work/|work]] in progress)

Building physical intuition about the divergence of a vector field can be gained by considering the flow of a fluid. One of the most simple [[../NeutrinoRestMass/|vector fields]] is a uniform [[../Velocity/|velocity]] [[../CosmologicalConstant/|field]] shown in below figure.

\begin{figure} \caption{Uniform Flow} \includegraphics[scale=1]{UniformFlow.eps} \end{figure}

Mathematically, this field would be

𝐕=5𝐒^

The divergence is then

𝐕=x5=0

Source/Sink flow field ( div > 0 / div < 0)

\begin{figure} \caption{Positive Divergence} \includegraphics[scale=1]{PositiveDivergence.eps} \end{figure}

\begin{figure} \caption{Negative Divergence} \includegraphics[scale=1]{NegativeDivergence.eps} \end{figure}

Circular flow with zero divergence

\begin{figure} \caption{Circular Flow} \includegraphics[scale=1]{CircularFlow.eps} \end{figure}

Coordinate Systems

Cartesian Coordinates

𝐕=Vxx+Vyy+Vzz

Cylindrical Coordinates

𝐕=1rr(rVr)+1rVθθ+Vzz

Spherical Coordinates

𝐕=1r2r(r2Vr)+1rsinθθ(Vθsinθ)+1rsinθVϕϕ

Template:CourseCat