PlanetPhysics/Example of Vector Potential

From testwiki
Jump to navigation Jump to search

If the [[../SolenoidalVectorField/|solenoidal]] [[../Vectors/|vector]] \,

U=U(x,y,z)

\, is a homogeneous [[../Bijective/|function]] of degree

λ

(

2

),\, then it has the [[../SolenoidalVectorField/|vector potential]]

A=1λ+2U×r,

where\, r=xi+yj+zk\, is the [[../PositionVector/|position vector]].

Proof. \, Using the entry nabla acting on products, we first may write ×(1λ+2U×r)=1λ+2[(r)U(U)r(U)r+(r)U]. In the brackets the first product is, according to Euler's [[../Formula/|theorem]] on homogeneous functions, equal to λU.\, The second product can be written as\, </math>U_x\frac{\partial\vec{r}}{\partial x}+ U_y\frac{\partial\vec{r}}{\partial y}+U_z\frac{\partial\vec{r}}{\partial z},whichisU_x\vec{i}+U_y\vec{j}+U_z\vec{k},i.e.\vec{U}.Thethirdproductis,duetothesodenoidalness,equalto0\vec{r} = \vec{0}.Thelastproductequalsto3\vec{U}(seethe[[../PositionVector/|firstformula]]forpositionvector).Thuswegettheresult<math>×(1λ+2U×r)=1λ+2[λUU0+3U]=U. This means that U has the vector potential (1).

Template:CourseCat