PlanetPhysics/Fresnel Formulae

From testwiki
Jump to navigation Jump to search

0cosx2dx=0sinx2dx=2π4

Proof.

\begin{pspicture}(-1,-1)(6.2,4.2) \psaxes[Dx=10,Dy=10]{->}(0,0)(-1,-1)(6,4) \rput(-0.2,4.1){y} \rput(6.1,-0.2){x} \rput(-0.17,-0.22){0} \rput(5,-0.3){R} \rput(0.7,0.3){π4} \rput(1.4,1.7){s} \rput(4.7,2.2){b} \psline[linecolor=blue,linewidth=0.05]{->}(0,0)(5,0) \psline[linecolor=blue,linewidth=0.04]{->}(3.55,3.55)(0,0) \psarc[linecolor=blue,linewidth=0.04]{->}(0,0){5}{-1}{45} \psarc(0,0){0.5}{0}{45} \end{pspicture}

The [[../Bijective/|function]] \,zez2\, is entire, whence by the fundamental [[../Formula/|theorem]] of complex analysis we have

γez2dz=0

where γ is the perimeter of the circular sector described in the picture.\, We split this contour integral to three portions:

0Rex2dxI1+bez2dzI2+sez2dzI3=0

By the entry concerning the Gaussian integral, we know that limRI1=π2.

For handling I2, we use the substitution z:=Reiφ=R(cosφ+isinφ),dz=iReiφdφ(0φπ4). Using also de Moivre's [[../Formula/|formula]] we can write |I2|=|iR0π4eR2(cos2φ+isin2φ)eiφdφ|R0π4|eR2(cos2φ+isin2φ)||eiφ||dφ|=R0π4eR2cos2φdφ. Comparing the [[../Cod/|graph]] of the function \,φcos2φ\, with the line through the points \,(0,1)\, and\, (π4,0)\, allows us to estimate cos2φ downwards: cos2φ14φπfor0φπ4 Hence we obtain |I2|R0π4dφeR2cos2φR0π4dφeR2(14φπ)ReR20π4e4R2πφdφ, and moreover |I2|π4ReR2(eR21)<πeR24ReR2=π4R0asR. Therefore Failed to parse (syntax error): {\displaystyle \lim_{R\to\infty}I_2 = 0.\\}

Then make to I3 the substitution z:=1+i2t,dz=1+i2dt(Rt0). It yields

I3=1+i2R0eit2dt=120R(1+i)(cost2isint2)dt=12(0Rsint2dt+0Rcost2dt)+i2(0Rsint2dt0Rcost2dt).

Thus, letting\, R,\, the equation (2) implies

π2+012(0sint2dt+0cost2dt)+i2(0sint2dt0cost2dt)=0.

Because the imaginary part vanishes, we infer that\, 0cosx2dx=0sinx2dx,\, whence (3) reads π2+01220sint2dt=0. So we get also the result\, 0sinx2dx=22π2=2π4,\, Q.E.D.

Template:CourseCat