PlanetPhysics/Groupoid5

From testwiki
Jump to navigation Jump to search

\newcommand{\sqdiagram}[9]{Failed to parse (unknown function "\diagram"): {\displaystyle \diagram #1 \rto^{#2} \dto_{#4}& \eqno{\mbox{#9}}} }

Groupoid definitions

A groupoid Failed to parse (unknown function "\grp"): {\displaystyle \grp} is simply defined as a [[../Cod/|small category]] with inverses over its set of [[../TrivialGroupoid/|objects]] Failed to parse (unknown function "\grp"): {\displaystyle X = Ob(\grp)} . One often writes Failed to parse (unknown function "\grp"): {\displaystyle \grp^y_x} for the set of [[../TrivialGroupoid/|morphisms]] in Failed to parse (unknown function "\grp"): {\displaystyle \grp} from x to y.

A topological groupoid consists of a space Failed to parse (unknown function "\grp"): {\displaystyle \grp} , a distinguished subspace Failed to parse (unknown function "\grp"): {\displaystyle \grp^{(0)} = \obg \subset \grp} , called {\it the space of objects} of Failed to parse (unknown function "\grp"): {\displaystyle \grp} , together with maps

Failed to parse (unknown function "\xymatrix"): {\displaystyle r,s~:~ \xymatrix{ \grp \ar@<1ex>[r]^r \ar[r]_s & \grp^{(0)} } }

called the {\it range} and {\it [[../SmallCategory/|source maps]]} respectively,

together with a law of [[../Cod/|composition]]

Failed to parse (unknown function "\grp"): {\displaystyle \circ~:~ \grp^{(2)}: = \grp \times_{\grp^{(0)}} \grp = \{ ~(\gamma_1, \gamma_2) \in \grp \times \grp ~:~ s(\gamma_1) = r(\gamma_2)~ \}~ \lra ~\grp~, }

such that the following hold~:~

\item[(1)] </math>s(\gamma_1 \circ \gamma_2) = r(\gamma_2)~,~ r(\gamma_1 \circ \gamma_2) = r(\gamma_1),forall(\gamma_1, \gamma_2) \in \grp^{(2)}Failed to parse (unknown function "\item"): {\displaystyle ~. \item[(2)] <math>s(x) = r(x) = x} ~, for all Failed to parse (unknown function "\grp"): {\displaystyle x \in \grp^{(0)}} ~.

\item[(3)] </math>\gamma \circ s(\gamma) = \gamma~,~ r(\gamma) \circ \gamma = \gamma,forall\gamma \in \grpFailed to parse (unknown function "\item"): {\displaystyle ~. \item[(4)] } (\gamma_1 \circ \gamma_2) \circ \gamma_3 = \gamma_1 \circ (\gamma_2 \circ \gamma_3)Failed to parse (unknown function "\item"): {\displaystyle ~. \item[(5)] Each <math>\gamma} has a two--sided inverse γ1 with </math>\gamma \gamma^{-1} = r(\gamma)~,~ \gamma^{-1} \gamma = s (\gamma)Failed to parse (unknown function "\grp"): {\displaystyle ~. Furthermore, only for topological groupoids the inverse map needs be continuous. It is usual to call <math>\grp^{(0)} = Ob(\grp)} {\it the set of objects} of Failed to parse (unknown function "\grp"): {\displaystyle \grp} ~. For Failed to parse (unknown function "\grp"): {\displaystyle u \in Ob(\grp)} , the set of arrows Failed to parse (unknown function "\lra"): {\displaystyle u \lra u} forms a [[../TrivialGroupoid/|group]] Failed to parse (unknown function "\grp"): {\displaystyle \grp_u} , called the isotropy group of Failed to parse (unknown function "\grp"): {\displaystyle \grp} at u .

Thus, as it is well kown, a topological groupoid is just a groupoid internal to the [[../Cod/|category]] of [[../CoIntersections/|topological]] spaces and continuous maps. The notion of internal groupoid has proved significant in a number of [[../CosmologicalConstant2/|fields]], since groupoids generalise bundles of groups, group actions, and equivalence relations. For a further study of groupoids we refer the reader to Brown (2006).

Several examples of groupoids are:

  • (a) locally compact groups, transformation groups, and any group in general:
  • (b) equivalence relations
  • (c) tangent bundles
  • (d) the [[../MoyalDeformation/|tangent groupoid]]
  • (e) holonomy groupoids for foliations
  • (f) Poisson groupoids
  • (g) [[../Cod/|graph]] groupoids.

As a simple, helpful example of a groupoid, consider (b) above. Thus, let R be an equivalence relation on a set X. Then R is a groupoid under the following [[../Cod/|operations]]: (x,y)(y,z)=(x,z),(x,y)1=(y,x). Here, Failed to parse (unknown function "\grp"): {\displaystyle \grp^0 = X } , (the diagonal of X×X ) and r((x,y))=x,s((x,y))=y.

Therefore, R2 = {((x,y),(y,z)):(x,y),(y,z)R}. When R=X×X, R is called a trivial groupoid. A special case of a [[../TrivialGroupoid/|trivial groupoid]] is R=Rn={1,2,...,n} × {1,2,...,n}. (So every i is equivalent to every j ). Identify (i,j)Rn with the [[../Matrix/|matrix]] unit eij. Then the groupoid Rn is just [[../Matrix/|matrix multiplication]] except that we only multiply eij,ekl when k=j, and (eij)1=eji. We do not really lose anything by restricting the multiplication, since the pairs eij,ekl excluded from groupoid multiplication just give the 0 product in normal algebra anyway. For a groupoid Failed to parse (unknown function "\grp"): {\displaystyle \grp_{lc}} to be a [[../LocallyCompactGroupoid/|locally compact groupoid]] means that Failed to parse (unknown function "\grp"): {\displaystyle \grp_{lc}} is required to be a (second countable) [[../LocallyCompactHausdorffSpaces/|locally compact Hausdorff space]], and the product and also inversion maps are required to be continuous. Each Failed to parse (unknown function "\grp"): {\displaystyle \grp_{lc}^u} as well as the unit space Failed to parse (unknown function "\grp"): {\displaystyle \grp_{lc}^0} is closed in Failed to parse (unknown function "\grp"): {\displaystyle \grp_{lc}} . What replaces the left [[../HigherDimensionalQuantumAlgebroid/|Haar measure]] on Failed to parse (unknown function "\grp"): {\displaystyle \grp_{lc}} is a [[../SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence/|system]] of measures λu (Failed to parse (unknown function "\grp"): {\displaystyle u \in \grp_{lc}^0} ), where λu is a positive [[../CoIntersections/|regular]] Borel measure on Failed to parse (unknown function "\grp"): {\displaystyle \grp_{lc}^u} with dense support. In addition, the λu 's are required to vary continuously (when integrated against Failed to parse (unknown function "\grp"): {\displaystyle f \in C_c(\grp_{lc}))} and to form an invariant family in the sense that for each x, the map yxy is a measure preserving [[../TrivialGroupoid/|homeomorphism]] from Failed to parse (unknown function "\grp"): {\displaystyle \grp_{lc}^s(x)} onto Failed to parse (unknown function "\grp"): {\displaystyle \grp_{lc}^r(x)} . Such a system {λu} is called a left [[../QuantumOperatorAlgebra5/|Haar system]] for the locally compact groupoid Failed to parse (unknown function "\grp"): {\displaystyle \grp_{lc}} .

Template:CourseCat