PlanetPhysics/Growth of Exponential Function

From testwiki
Jump to navigation Jump to search

Lemma. limxxaex=0 for all constant values of a.

Proof. \, Let ε be any positive number.\, Then we get:

0<xaexxaex<xaxa+1(a+1)!=(a+1)!x<ε as soon as\, x>max{1,(a+1)!ε}.\, Here, means the ceiling function;\, ex has been estimated downwards by taking only one of the all positive terms of the series expansion ex=1+x1!+x22!++xnn!+\\

\htmladdnormallink{theorem {http://planetphysics.us/encyclopedia/Formula.html}.} The growth of the real exponential function\,\, xbx\,\, exceeds all power functions, i.e. limxxabx=0 with a and b any constants,\, b>1.

Proof. \, Since\, lnb>0,\, we obtain by using the lemma the result limxxabx=limx(xalnbex)lnb=0lnb=0.\\

Corollary 1. \, limx0+xlnx=0.

Proof. \, According to the lemma we get 0=limuueu=limx0+ln1x1x=limx0+xlnx.\\

Corollary 2. \, limxlnxx=0.

Proof. \, Change in the lemma\, x\, to\, lnx.\\

Corollary 3. \, limxx1x=1. \, (Cf. limit of nth root of n.)

Proof. \, By corollary 2, we can write:\, x1x=elnxxe0=1\, as\, x (see also theorem 2 in limit rules of [[../Bijective/|functions]]).

Template:CourseCat