PlanetPhysics/Heaviside Formula

From testwiki
Jump to navigation Jump to search

Let P(s) and Q(s) be polynomials with the degree of the former less than the degree of the latter.

  • If all complex zeroes a1,a2,,an of Q(s) are simple, then
1{P(s)Q(s)}=j=1nP(aj)Q(aj)eajt.
  • If the different zeroes a1,a2,,an of Q(s) have the multiplicities m1,m2,,mn, respectively, we denote\, Fj(s):=(saj)mjP(s)/Q(s);\, then
1{P(s)Q(s)}=j=1neajtk=0mj1Fj(k)(aj)tmj1kk!(mj1k)!.

A special case of the Heaviside formula (1) is Failed to parse (syntax error): {\displaystyle \mathcal{L}^{-1}\left\{\frac{Q'(s)}{Q(s)}\right\} \;=\; \sum_{j=1}^ne^{a_jt}.\\}

Example. \, Since the zeros of the binomial s4+4a4 are\, s=(±1±i)a,\, we obtain 1{s3s4+4a4}=141{4s3s4+4a4}=14±e(±1±i)at=eat+eat2eiat+eiat2=coshatcosat.\\

Proof of (1). \, Without hurting the generality, we can suppose that Q(s) is monic.\, Therefore Q(s)=(sa1)(sa2)(ssn). For\, j=1,2,,n,\, denoting Q(s):=(saj)Qj(s), one has\, Qj(aj)0.\, We have a partial fraction expansion of the form

P(s)Q(s)=C1sa1+C2sa2++Cnsan

with constants Cj.\, According to the linearity and the formula 1 of the parent entry, one gets

1{P(s)Q(s)}=j=1nCjeajt.

For determining the constants Cj, multiply (3) by saj.\, It yields P(s)Qj(s)=Cj+(saj)νjCνsaν. Setting to this identity \,s:=aj\, gives the value

Cj=;P(aj)Qj(aj).

But since\, Q(s)=dds((saj)Qj(s))=Qj(s)+(saj)Qj(s),\, we see that\, Q(aj)=Qj(aj);\, thus the equation (5) may be written

Cj;=P(aj)Q(aj).

The values (6) in (4) produce the [[../Formula/|formula]] (1).

All Sources

[1]

References

  1. {\sc K. V\"ais\"al\"a:} Laplace-muunnos .\, Handout Nr. 163.\quad Teknillisen korkeakoulun ylioppilaskunta, Otaniemi, Finland (1968).

Template:CourseCat