PlanetPhysics/Heron's Principle
\htmladdnormallink{theorem {http://planetphysics.us/encyclopedia/Formula.html}.}\, Let and be two points and a line of the Euclidean plane.\, If is a point of such that the sum is the least possible, then the lines and form equal angles with the line .
This Heron's principle , concerning the [[../FluorescenceCrossCorrelationSpectroscopy/|reflection]] of light, is a special case of [[../GravitationalLensing/|Fermat's principle]] in optics.\\
Proof. \, If and are on different sides of , then must be on the line , and the assertion is trivial since the vertical angles are equal.\, Thus, let the points and be on the same side of .\, Denote by and the points of the line where the normals of set through and intersect , respectively.\, Let be the intersection point of the lines and .\, Then, is the point of where the normal line of set through intersects .
\begin{pspicture}(-3,-1)(3,3) \psline(-2.6,0)(2.6,0) \psdots[linecolor=blue](-2,2.5)(2,1.6) \psline[linestyle=dashed](-2,2.5)(-2,0) \psline[linestyle=dashed](2,1.6)(2,0) \psline(-2,2.5)(2,0) \psline(2,1.6)(-2,0) \psline(0.439,0.976)(0.439,0) \psdot[linecolor=red](0.439,0) \rput(-2.2,2.75){} \rput(2,1.83){} \rput(-2,-0.25){} \rput(2,-0.25){} \rput(0.44,1.3){} \rput(0.44,-0.25){} \rput(2.8,0){} \end{pspicture}
Justification:\, From two pairs of similar right triangles we get the proportion equations which imply the equation From this we can infer that also Thus the corresponding angles and are equal.
\begin{pspicture}(-3,-3)(3,3) \psline(-2.6,0)(2.6,0) \psdots[linecolor=blue](-2,2.5)(2,1.6) \psline[linestyle=dashed](-2,2.5)(-2,-2.5)(0.439,0) \psline[linecolor=blue](-2,2.5)(0.439,0) \psline[linecolor=blue](0.439,0)(2,1.6) \psdot[linecolor=red](0.439,0) \rput(-2,2.75){} \rput(2,1.83){} \rput(-2.2,-0.25){} \rput(0.44,-0.27){} \rput(2.8,0){} \psline[linestyle=dotted](-2,2.5)(-0.7,0)(2,1.6) \psdots(-0.7,0)(-2,-2.5) \rput(-0.7,-0.29){} \rput(-2.3,-2.5){} \psline(-2.15,1.15)(-1.85,1.15) \psline(-2.15,1.05)(-1.85,1.05) \psline(-2.15,-1.2)(-1.85,-1.2) \psline(-2.15,-1.1)(-1.85,-1.1) \end{pspicture}
We still state that the route is the shortest.\, If is another point of the line , then\, ,\, and thus we obtain
All Sources
References
- ↑ {\sc Tero Harju}: Geometria. Lyhyt kurssi .\, Matematiikan laitos. Turun yliopisto, Turku (2007).