PlanetPhysics/Heron's Principle

From testwiki
Jump to navigation Jump to search

\htmladdnormallink{theorem {http://planetphysics.us/encyclopedia/Formula.html}.}\, Let A and B be two points and l a line of the Euclidean plane.\, If X is a point of l such that the sum AX+XB is the least possible, then the lines AX and BX form equal angles with the line l.

This Heron's principle , concerning the [[../FluorescenceCrossCorrelationSpectroscopy/|reflection]] of light, is a special case of [[../GravitationalLensing/|Fermat's principle]] in optics.\\

Proof. \, If A and B are on different sides of l, then X must be on the line AB, and the assertion is trivial since the vertical angles are equal.\, Thus, let the points A and B be on the same side of l.\, Denote by P and Q the points of the line l where the normals of l set through A and B intersect l, respectively.\, Let C be the intersection point of the lines AQ and BP.\, Then, X is the point of l where the normal line of l set through C intersects l.

\begin{pspicture}(-3,-1)(3,3) \psline(-2.6,0)(2.6,0) \psdots[linecolor=blue](-2,2.5)(2,1.6) \psline[linestyle=dashed](-2,2.5)(-2,0) \psline[linestyle=dashed](2,1.6)(2,0) \psline(-2,2.5)(2,0) \psline(2,1.6)(-2,0) \psline(0.439,0.976)(0.439,0) \psdot[linecolor=red](0.439,0) \rput(-2.2,2.75){A} \rput(2,1.83){B} \rput(-2,-0.25){P} \rput(2,-0.25){Q} \rput(0.44,1.3){C} \rput(0.44,-0.25){X} \rput(2.8,0){l} \end{pspicture}

Justification:\, From two pairs of similar right triangles we get the proportion equations AP:CX=PQ:XQ,BQ:CX=PQ:PX, which imply the equation AP:PX=BQ:XQ. From this we can infer that also ΔAXPΔBXQ. Thus the corresponding angles AXP and BXQ are equal.

\begin{pspicture}(-3,-3)(3,3) \psline(-2.6,0)(2.6,0) \psdots[linecolor=blue](-2,2.5)(2,1.6) \psline[linestyle=dashed](-2,2.5)(-2,-2.5)(0.439,0) \psline[linecolor=blue](-2,2.5)(0.439,0) \psline[linecolor=blue](0.439,0)(2,1.6) \psdot[linecolor=red](0.439,0) \rput(-2,2.75){A} \rput(2,1.83){B} \rput(-2.2,-0.25){P} \rput(0.44,-0.27){X} \rput(2.8,0){l} \psline[linestyle=dotted](-2,2.5)(-0.7,0)(2,1.6) \psdots(-0.7,0)(-2,-2.5) \rput(-0.7,-0.29){X1} \rput(-2.3,-2.5){A} \psline(-2.15,1.15)(-1.85,1.15) \psline(-2.15,1.05)(-1.85,1.05) \psline(-2.15,-1.2)(-1.85,-1.2) \psline(-2.15,-1.1)(-1.85,-1.1) \end{pspicture}

We still state that the route AXB is the shortest.\, If X1 is another point of the line l, then\, AX1=AX1,\, and thus we obtain AX1B=AX1B=AX1+X1BAB=AXB=AXB.

All Sources

[1]

References

  1. {\sc Tero Harju}: Geometria. Lyhyt kurssi .\, Matematiikan laitos. Turun yliopisto, Turku (2007).

Template:CourseCat