PlanetPhysics/Index of Algebraic Geometry
This is a contributed entry in progress
Index of Algebraic Geometry
Algebraic Geometry (AG), and [[../NAQAT2/|non-commutative geometry/]]. On the other hand, there are also close ties between [[../CoIntersections/|algebraic]] geometry and number theory.
Outline
Disciplines in algebraic geometry
- Birational geometry, Dedekind \htmladdnormallink{domains {http://planetphysics.us/encyclopedia/Bijective.html} and Riemann-Roch [[../Formula/|theorem]]}
- Homology and [[../NoncommutativeGeometry4/|cohomology theories]]
- Algebraic [[../TrivialGroupoid/|groups]]: [[../BilinearMap/|Lie groups]], [[../Matrix/|matrix]] group schemes,group machines, linear groups, generalizing Lie groups, [[../CategoricalGroupRepresentation/|representation]] theory
- Abelian varieties
- Arithmetic algebraic geometry
- [[../TrivialGroupoid/|duality]] #[[../CategoricalOntology/|category theory applications]] in algebraic geometry
- [[../IndexOfCategories/|indexes of category]], [[../TrivialGroupoid/|functors]] and [[../VariableCategory2/|natural transformations]]
- Grothendieck's Descent theory
- `[[../IsomorphismClass/|Anabelian Geometry]]' #Categorical Galois theory
- [[../2Groupoid2/|higher dimensional algebra]] ([[../2Groupoid2/|HDA]])
- [[../TriangulationMethodsForQuantizedSpacetimes2/|Quantum Algebraic Topology]] ([[../QuantumOperatorAlgebra5/|QAT]])
- Quantum Geometry
- [[../Program3/|computer]] algebra [[../SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence/|systems]]; an example is: explicit projective resolutions for finitely-generated [[../RModule/|modules]] over suitable rings
Cohomology
Cohomology is an essential theory in the study of complex [[../NoncommutativeGeometry4/|manifolds]]. [[../LQG2/|computations]] in cohomology studies of complex manifolds in algebraic geometry utilize similar computations to those of cohomology theory in [[../CubicalHigherHomotopyGroupoid/|algebraic topology]]: spectral sequences, excision, the Mayer-Vietoris sequence, etc.
- [[../CohomologyTheoryOnCWComplexes/|cohomology groups]] are defined and then cohomology functors associate [[../TrivialGroupoid/|Abelian groups]] to sheaves on a scheme; one may view such Abelian groups them as cohomology with coefficients in a scheme.
- Cohomology functors
- [[../NaturalIsomorphism/|fundamental cohomology theorems]]
- A basic [[../Bijective/|type]] of cohomology for schemes is the sheaf cohomology
- Whitehead groups, torsion and towers
- xyz
Seminars on Algebraic Geometry and Topos Theory (SGA)
Algebraic varieties and the GAGA principle
- new1x
- new2y
- new3z
Number theory applications
Cohomology theory
- Cohomology group
- Cohomology sequence
- DeRham cohomology
- new4
Homology theory
- [[../ExtendedHurewiczFundamentalTheorem/|homology group]] #Homology sequence
- Homology complex
- new4
Duality in algebraic topology and category theory
- Tanaka-Krein duality
- Grothendieck duality
- [[../TrivialGroupoid/|categorical duality]] #[[../DualityAndTriality/|tangled duality]] #DA5
- DA6
- DA7
Category theory applications
- [[../AbelianCategory2/|abelian categories]]
- [[../CoIntersections/|topological]] [[../Cod/|category]] #[[../QuantumFundamentalGroupoid/|fundamental groupoid functor]] #Categorical Galois theory
- [[../ModuleAlgebraic/|non-Abelian algebraic topology]] #Group category
- [[../GroupoidCategory3/|groupoid category]] # category
- [[../GrothendieckTopos/|topos]] and topoi axioms
- [[../ManyValuedLogicSubobjectClassifiers/|generalized toposes]] #Categorical logic and algebraic topology
- [[../MetaTheorems/|meta-theorems]] #Duality between spaces and algebras
Examples of Categories
The following is a listing of categories relevant to algebraic topology:
- Algebraic categories
- Topological category
- Category of sets, Set
- Category of topological spaces
- [[../CategoryOfRiemannianManifolds/|category of Riemannian manifolds]] #Category of CW-complexes
- Category of Hausdorff spaces
- [[../CategoryOfBorelSpaces/|category of Borel spaces]] #Category of CR-complexes
- Category of [[../Cod/|graphs]] #Category of [[../SimplicialCWComplex/|spin networks]] #Category of groups
- Galois category
- Category of [[../HomotopyCategory/|fundamental groups]] #Category of [[../InvariantBorelSet/|Polish groups]]
- Groupoid category
- [[../GroupoidCategory/|category of groupoids]] (or groupoid category)
- [[../CategoryOfBorelGroupoids/|category of Borel groupoids]] #Category of [[../CubicalHigherHomotopyGroupoid/|fundamental groupoids]]
- Category of functors (or [[../TrivialGroupoid/|functor category]])
- [[../ThinEquivalence/|double groupoid]] category
- [[../HorizontalIdentities/|double category]] #[[../CategoryOfHilbertSpaces/|category of Hilbert spaces]] #[[../CategoryOfQuantumAutomata/|category of quantum automata]] #[[../RCategory/|R-category]] #Category of [[../Algebroids/|algebroids]] #Category of [[../GeneralizedSuperalgebras/|double algebroids]]
- Category of [[../ContinuousGroupoidHomomorphism/|dynamical systems]]
Index of functors
The following is a contributed listing of functors:
- Covariant functors
- Contravariant functors
- [[../SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence/|adjoint functors]]
- [[../PreadditiveFunctor/|preadditive functors]]
- Additive functor
- [[../CategoryOfLogicAlgebras/|representable functors]]
- Fundamental groupoid functor
- Forgetful functors
- Grothendieck group functor
- Exact functor
- Multi-functor
- [[../RightAdjointFunctor/|section functors]]
- NT2
- NT3
Index of natural transformations
The following is a contributed listing of natural transformations:
- [[../IsomorphismClass/|natural equivalence]] #Natural transformations in a [[../2Category/|2-category]] #NT3
- NT1
Grothendieck proposals
- Esquisse d'un Programme
\item Pursuing Stacks
- S2
- S3
Descent theory
- D1
- D2
- D3
Higher Dimensional Algebraic Geometry (HDAG)
- Categorical groups and [[../Paragroups/|supergroup]] algebras
- Double groupoid varieties
- Double algebroids
- Bi-algebroids
- -algebroid
- -category
- -category
- [[../SuperCategory6/|super-category]] #weak [[../InfinityGroupoid/|n-categories]] of [[../IsomorphismClass/|algebraic varieties]]
- Bi-dimensional Algebraic Geometry
- Anabelian Geometry
- [[../NoncommutativeGeometry/|Noncommutative geometry]]
- Higher-homology/cohomology theories
- H1
- H2
- H3
- H4
Axioms of cohomology theory
- A1
- A2
- A3
Axioms of homology theory
- A1
- A2
- A3
Quantum algebraic topology (QAT)
(a). Quantum algebraic topology is described as the mathematical and physical study of \htmladdnormallink{general theories {http://planetphysics.us/encyclopedia/GeneralTheory.html} of quantum [[../TrivialGroupoid/|algebraic structures]] from the standpoint of algebraic topology, [[../TrivialGroupoid/|category theory]] and their [[../AbelianCategory3/|non-Abelian]] extensions in higher dimensional algebra and [[../SuperCategory6/|supercategories]]}
- [[../Groupoid/|quantum operator algebras]] (such as: involution, *-algebras, or -algebras, [[../CoordinateSpace/|von Neumann algebras]],
, JB- and JL- algebras, - or C*- algebras,
- Quantum von Neumann algebra and subfactors; Jone's towers and subfactors
- Kac-Moody and K-algebras
- categorical groups
- [[../QuantumGroup4/|Hopf algebras]], quantum Groups and [[../QuantumGroup4/|quantum group]] algebras
- [[../WeakHopfAlgebra/|quantum groupoids]] and weak Hopf -algebras
- [[../GroupoidCConvolutionAlgebra/|groupoid C*-convolution algebras]] and *-convolution algebroids
- [[../NonAbelianQuantumAlgebraicTopology3/|quantum spacetimes]] and [[../QuantumFundamentalGroupoid4/|quantum fundamental groupoids]]
- Quantum double Algebras
- [[../LQG2/|quantum gravity]], [[../Supersymmetry/|supersymmetries]], [[../AntiCommutationRelations/|supergravity]], [[../NewtonianMechanics/|superalgebras]] and graded `[[../BilinearMap/|Lie' algebras]] #Quantum [[../CategoryOfLogicAlgebras/|categorical algebra]] and higher--dimensional, Failed to parse (unknown function "\L"): {\displaystyle \L{}-M_n} - Toposes
- Quantum R-categories, [[../RDiagram/|R-supercategories]] and [[../LongRangeCoupling/|spontaneous symmetry breaking]] #[[../NonAbelianQuantumAlgebraicTopology3/|Non-Abelian Quantum Algebraic Topology]] (NA-QAT): closely related to NAAT and HDA.
Quantum Geometry
- [[../QuantumGeometry2/|Quantum Geometry overview]]
- Quantum non-commutative geometry
2x
- new1x
- new2y
13
- new1x
- new2y
14
Textbooks and bibliograpies
Bibliography on Category theory, AT and QAT
Textbooks and Expositions:
- A Textbook1
- A Textbook2
- A Textbook3
- A Textbook4
- A Textbook5
- A Textbook6
- A Textbook7
- A Textbook8
- A Textbook9
- A Textbook10
- A Textbook11
- A Textbook12
- A Textbook13
- new1x
All Sources
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
References
- ↑ Alexander Grothendieck and J. Dieudonn\'{e}.: 1960, El\'{e}ments de geometrie alg\'{e}brique., Publ. Inst. des Hautes Etudes de Science , 4 .
- ↑ Alexander Grothendieck. S\'eminaires en G\'eometrie Alg\`ebrique- 4 , Tome 1, Expos\'e 1 (or the Appendix to Expos\'ee 1, by `N. Bourbaki' for more detail and a large number of results. AG4 is freely available in French; also available here is an extensive Abstract in English.
- ↑ Alexander Grothendieck. 1962. S\'eminaires en G\'eom\'etrie Alg\'ebrique du Bois-Marie, Vol. 2 - Cohomologie Locale des Faisceaux Coh\`erents et Th\'eor\`emes de Lefschetz Locaux et Globaux. , pp.287. (with an additional contributed expos\'e by Mme. Michele Raynaud)., Typewritten manuscript available in French; see also a brief summary in English . Available for free downloads at on the web.
- ↑ Alexander Grothendieck, 1984. "Esquisse d'un Programme", (1984 manuscript), finally published in "Geometric Galois Actions" , L. Schneps, P. Lochak, eds., London Math. Soc. Lecture Notes {\mathbf 242}, Cambridge University Press, 1997, pp.5-48; English transl., ibid., pp. 243-283. MR 99c:14034 .
- ↑ Qing Liu.2002. Algebraic Geometry and Arithmetic Curves , Oxford Graduate Texts in Mathematics 6, 2002. 300 pages on schemes followed by geometry and arithmetic surfaces. (Serre duality is approached via Grothendieck duality).
- ↑ Igor Shafarevich, Basic Algebraic Geometry Vols. 1 and 2; Vol.2: Schemes and Complex Manifolds ., Second Revised and Expanded Edition. Springer-Verlag; scheme theory, varieties as schemes, varieties and schemes over the complex numbers, and complex manifolds.
- ↑ James Milne, Elliptic Curves , online course notes. Available at his website.
- ↑ Joseph H. Silverman, The Arithmetic of Elliptic Curves . Springer-Verlag, New York, 1986.
- ↑ Joseph H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves . Springer-Verlag, New York, 1994.
- ↑ Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions . Princeton University Press, Princeton, New Jersey, 1971.
- ↑ David Mumford, Abelian Varieties , Oxford University Press, London, 1970. This book is a canonical reference on the subject. "It is written in the language of modern algebraic geometry, and provides a thorough grounding in the theory of abelian varieties."