PlanetPhysics/Legendre Polynomials

From testwiki
Jump to navigation Jump to search

The Legendre polynomials generate the [[../Power/|power]] series that solves Legendre's [[../DifferentialEquations/|differential equation]]:

(1x2)P(x)2xP(x)+n(n+1)P(x)=0.

This [[../DifferentialEquations/|ordinary differential equation]] with variable coefficients is named in honor of Adrien-Marie Legendre (1752-1833). While quite literally following in the footsteps of Laplace, he developed the Legendre polynomials in a paper on celestial [[../Mechanics/|mechanics]]. In a strange tangled web of fate, the Legendre polynomials are heavily used in electrostatics to solve [[../FluorescenceCrossCorrelationSpectroscopy/|Laplace's equation]] in spherical coordinates

2Φsph=0

The series can be easily generated using the Rodrigues' [[../Formula/|formula]] Pn(x)=12nn!dndxn(x21)n.

The first six polynomials are:

P0(x)=1\\ P1(x)=x\\ P2(x)=12(3x21)\\ P3(x)=12(5x33x)\\ P4(x)=18(35x430x2+3)\\ P5(x)=18(63x570x3+15x)\\

Not yet done....

References

[1] Lebedev, N. "Special [[../Bijective/|functions]] \& Their Applications." Dover Publications, Inc., New York, 1972.

[2] Jackson, J. "Classical Electrodynamics." John Wiley \& Sons, Inc., New York, 1962.

\htmladdnormallink{http://www-groups.dcs.st-and.ac.uk/\~{}history/Biographies/Legendre.html}{http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Legendre.html} \htmladdnormallink{http://astrowww.phys.uvic.ca/\~{}tatum/celmechs.html}{http://astrowww.phys.uvic.ca/~tatum/celmechs.html} \htmladdnormallink{http://www.du.edu/\~{}jcalvert/math/legendre.htm}{http://www.du.edu/~jcalvert/math/legendre.htm} http://en.wikipedia.org/wiki/Legendre_polynomials

Template:CourseCat