PlanetPhysics/Legendre Polynomials
The Legendre polynomials generate the [[../Power/|power]] series that solves Legendre's [[../DifferentialEquations/|differential equation]]:
This [[../DifferentialEquations/|ordinary differential equation]] with variable coefficients is named in honor of Adrien-Marie Legendre (1752-1833). While quite literally following in the footsteps of Laplace, he developed the Legendre polynomials in a paper on celestial [[../Mechanics/|mechanics]]. In a strange tangled web of fate, the Legendre polynomials are heavily used in electrostatics to solve [[../FluorescenceCrossCorrelationSpectroscopy/|Laplace's equation]] in spherical coordinates
The series can be easily generated using the Rodrigues' [[../Formula/|formula]]
The first six polynomials are:
\\ \\ \\ \\ \\ \\
Not yet done....
References
[1] Lebedev, N. "Special [[../Bijective/|functions]] \& Their Applications." Dover Publications, Inc., New York, 1972.
[2] Jackson, J. "Classical Electrodynamics." John Wiley \& Sons, Inc., New York, 1962.
\htmladdnormallink{http://www-groups.dcs.st-and.ac.uk/\~{}history/Biographies/Legendre.html}{http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Legendre.html} \htmladdnormallink{http://astrowww.phys.uvic.ca/\~{}tatum/celmechs.html}{http://astrowww.phys.uvic.ca/~tatum/celmechs.html} \htmladdnormallink{http://www.du.edu/\~{}jcalvert/math/legendre.htm}{http://www.du.edu/~jcalvert/math/legendre.htm} http://en.wikipedia.org/wiki/Legendre_polynomials