PlanetPhysics/Path Independence of Work
Suppose an [[../TrivialGroupoid/|object]] of [[../Mass/|mass]] is free to move in some [[../Bijective/|domain]], (it is assumed that ), and let and denote the [[../PositionVector/|position vectors]] of points in . The [[../Work/|work]] required to move the object from to is given by
where is the total [[../Thrust/|force]] acting on the object, as a [[../Bijective/|function]] of [[../Position/|position]] in . If is a conservative force, then it can be expressed in terms of a potential function; in particular, if is taken to denote the potential [[../CosmologicalConstant/|energy]], then
where denotes the [[../Gradient/|gradient operator]]. Under such conditions, the work required to move the object of mass from position to in is path independent. This means that if the object were to move along a straight line connecting and , the amount of work done would be in exact equality with any other path.
Proof of Path Independence
Given the expression for work,
and the [[../Bijective/|relation]] between the conservative force, and the potential energy, ,
it follows that, upon substitution of the later into the former,
Focus on the integrand, , and write it in terms of its components as,
Now, recall that for some arbitrary function, , the differential of that function is Based on this, it immediately follows that
Substituting this result back into the work equation,
Therefore, from the final equation, it is clearly seen that the work to move the object from position to is only dependent upon the potential energy at those positions, and not the path taken. Note that in the above, the minus sign in front of the integral has been dropped; this was done to show, in the final result, the amount of work done by the [[../SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence/|system]]. That is, if the potential energy at the final position is greater than that at the initial, then is positive, and has done work.