PlanetPhysics/Quantum Symmetry Bibliography
Topical references for Quantum Symmetry and Algebra
All Sources
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [54] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301]
References
- ↑ Abragam, A.; Bleaney, B. Electron paramagnetic resonance of transition ions. ; Clarendon Press: Oxford, 1970.
- ↑ Aguiar, M.; Andruskiewitsch, N. Representations of matched pairs of groupoids and applications to weak Hopf algebras. {\it Contemp. Math.} {\mathbf 2005}, 376 , 127--173.
- ↑ Aguiar, M.C.O.; Dobrosavljevic, V.; Abrahams, E.; Kotliar G. Critical behavior at Mott--Anderson transition: a TMT-DMFT perspective. Phys. Rev. Lett. {\mathbf 2009}, 102 , 156402, 4~pages.
- ↑ Aguiar, M.C.O.; Dobrosavljevic, V.; Abrahams, E.; Kotliar G. Scaling behavior of an Anderson impurity close to the Mott-Anderson transition. Phys. Rev.~B {\mathbf 2006}, 73 , 115117, 7~pages.
- ↑ Alfsen, E.M.; Schultz, F.W. Geometry of state spaces of operator algebras. ; Birkh\"auser: Boston~-- Basel~-- Berlin, 2003.
- ↑ Altintash, A.A.; Arika, M. The inhomogeneous invariance quantum supergroup of supersymmetry algebra. Phys. Lett. A {\mathbf 2008}, 372 , 5955--5958.
- ↑ Anderson, P.W. Absence of diffusion in certain random lattices. Phys. Rev. {\mathbf 1958}, 109 , 1492--1505.
- ↑ Anderson, P.W. Topology of Glasses and Mictomagnets. Lecture presented at The Cavendish Laboratory : Cambridge, UK, 1977.
- ↑
Baez, J. and Huerta, J. An Invitation to Higher Gauge Theory . {\mathbf 2010}, Preprint, March 23, 2010 : Riverside, CA;pp. 60. http://www.math.ucr.edu/home/baez/invitation.pdf
- ↑ Baez, J. and Schreiber, U. Higher Gauge Theory II: 2-Connections (JHEP Preprint), 2008;pp.75. \\ http://math.ucr.edu/home/baez/2conn.pdf.
- ↑ Baianu, I.C.; Editor. Quantum Algebra and Symmetry: Quantum Algebraic Topology, Quantum Field Theories and Higher Dimensional Algebra ; PediaPress GmbH: Mainz, Second Edition, Vol. \\1 : Quantum Algebra, Group Representations and Symmetry ; Vol.2 : Quantum Algebraic Topology: \\ QFTs, SUSY, HDA ;Vol.3 : Quantum Logics and Quantum Biographies , December 20, 2010;pp. 1,068.
- ↑ Baianu, I.C. Categories, functors and automata theory: a novel approach to quantum automata through algebraic-topological quantum computation. In Proceedings of the 4th Intl. Congress of Logic, Methodology and Philosophy of Science, Bucharest, August~-- September, 1971 ; University of Bucharest: Bucharest, 1971;pp. 256--257.
- ↑ Baianu, I.C. Structural studies of erythrocyte and bacterial cytoplasmic membranes by X-ray diffraction and electron microscopy. PhD Thesis; Queen Elizabeth College: University of London, 1974.
- ↑ Baianu, I.C. X-ray scattering by partially disordered membrane systems. Acta Cryst. A , 1978, {\mathbf 34}: 751--753.
- ↑ Baianu, I.C.; Boden, N.; Levine, Y.K.;Lightowlers, D. Dipolar coupling between groups of three spin-1/2 undergoing hindered reorientation in solids. {\it Solid State Comm.} 1978, {\mathbf 27}, 474--478.
- ↑ Baianu, I.C. Structural order and partial disorder in biological systems. Bull. Math. Biology {\mathbf 1980}, 42 , 464--468.
- ↑ Baianu, I.C.; Boden N.; Levine Y.K.; Ross S.M. Quasi-quadrupolar NMR spin-Echoes in solids containing dipolar coupled methyl groups. J. Phys. C: Solid State Phys. {\mathbf 1978}, 11 , L37--L41.
- ↑ Baianu, I.C.; Boden, N.;Lightowlers, D. NMR spin-echo responses of dipolar-coupled spin-1/2 triads in solids. J. Magnetic Resonance {\mathbf 1981},43 , 101--111.
- ↑ Baianu, I.C.; Boden, N.; Mortimer, M.; Lightowlers, D. A new approach to the structure of concentrated aqueous electrolyte solutions by pulsed N.M.R. Chem. Phys. Lett. {\mathbf 1978}, 54 , 169--175.
- ↑ Baianu, I.C.; Glazebrook J.F.; Brown, R. A non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity. Axiomathes {\mathbf 2007}, 17 , 353--408.
- ↑ Baianu, I. C.; Glazebrook, J. F.; Brown, R. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review. Sigma {\mathbf 2009}, 5 , 70 pages.
- ↑ Baianu, I.C.; Rubinson, K.A.; Patterson, J. The observation of structural relaxation in a FeNiPB glass by -ray scattering and ferromagnetic resonance. {\em Phys. Status Solidi A} {\mathbf 1979}, 53 , K133--K135.
- ↑ Baianu, I.C.; Rubinson, K.A.; Patterson, J. Ferromagnetic resonance and spin--wave excitations in metallic glasses. J. Phys. Chem. Solids {\mathbf 1979}, 40 , 940--951.
- ↑ Bais, F. A.; Schroers, B. J.; and Slingerland, J. K. Broken quantum symmetry and confinement phases in planar physics. Phys. Rev. Lett. 2002 , 89 , No. 18 (1--4), 181--201.
- ↑ Ball, R.C. Fermions without fermion fields. Phys. Rev. Lett. 95 (2005), 176407, 4~pages.
- ↑ Banica, T. Th\'eorie des repr\'esentations du groupe quantique compact libre . C. R. Acad. Sci. Paris. , {\mathbf 1996}, 322 , Serie I, 241--244.
- ↑ Banica, T. Compact Kac algebras and commuting squares. J. Funct. Anal. {\mathbf 2000} ,176 , no. 1, 80--99.
- ↑ Barrett, J.W. Geometrical measurements in three-dimensional quantum gravity. In Proceedings of the Tenth Oporto Meeting on Geometry, Topology and Physics (2001) , Internat. J. Modern Phys. A {\mathbf 2003}, 18 , October, suppl., 97--113.
- ↑ Barrett, J.W.; Mackaay, M. Categorical representation of categorical groups. Theory Appl. Categ. {\mathbf 2006},16 , 529--557.
- ↑ Baues, H.J. ; Conduch{\'e}, D. On the tensor algebra of a nonabelian group and applications. -Theory {\mathbf 1991/92}, 5 ), 531--554.
- ↑
Bellissard, J. K-theory of C*-algebras in solid state physics. Statistical Mechanics and Field Theory: Mathematical Aspects
- Dorlas, T. C. et al., Editors; Springer Verlag. Lect. Notes in Physics , {\mathbf 1986}, 257 , 99--156.
- ↑ Bichon, J. Algebraic quantum permutation groups. Asian-Eur. J. Math. {\mathbf 2008}, 1 , no. 1, 1--13. arXiv:0710.1521
- ↑ Bichon, J.; De Rijdt, A.; Vaes, S. Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Comm. Math. Phys. {\mathbf 2006}, 262 , 703--728.
- ↑ Blaom, A.D. Lie algebroids and Cartan's method of equivalence.
- ↑ Blok, B.; Wen X.-G. Many-body systems with non-Abelian statistics. Nuclear Phys. B {\mathbf 1992}, 374 , 615--619.
- ↑ B\"ockenhauer, J.; Evans, D.; Kawahigashi, Y. Chiral structure of modular invariants for subfactors. Comm. Math. Phys. {\mathbf 2000}, {\mathbf 210}, 733--784,
- ↑ B\"ohm, G.; Nill F.; Szlach\'anyi, K. Weak Hopf algebras. I.~Integral theory and -structure, J. Algebra {\mathbf 1999},221 , 385--438.
- ↑ Bohm, A.; Gadella, M. Dirac kets, Gamow vectors and Gelfan'd triples. The rigged Hilbert space formulation of quantum mechanics, {\it Lecture Notes in Physics}, Vol.~348 ; Springer-Verlag:Berlin, 1989.
- ↑ Borceux, F.; Janelidze, G. Galois Theories. Cambridge Studies in Advanced Mathematics , Vol.72 ; Cambridge University Press: Cambridge, 2001.
- ↑ Bos, R. Continuous representations of groupoids, Houston J. Math , in press
- ↑ Bos, R. Geometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids, Int. J. Geom. Methods Mod. Phys. {\mathbf 2007}, 4 , 389--436,
- ↑ Bos, R. Groupoids in geometric quantization . PhD thesis: Radboud University Nijmegen, 2007.
- ↑ Brauner, T. Spontaneous Symmetry Breaking and Nambu--Goldstone Bosons in Quantum Many-Body Systems. Symmetry {\mathbf 2010}, 2 , 609-657.
- ↑ Brown, R. Groupoids and Van Kampen's theorem. Proc. London Math. Soc. {\mathbf 1967}, 3 (17), 385-401.
- ↑ Brown, R. Elements of {M odern {T}opology}; McGraw-Hill Book Co.: New York, 1968.
- ↑ Brown, R. Computing homotopy types using crossed -cubes of groups. In Adams Memorial Symposium on Algebraic Topology, 1, (Manchester, 1990) . London Math. Soc. Lecture Note Ser. Volume 175 ; Cambridge Univ. Press: Cambridge, 1992;pp. 187--210.
- ↑ Brown, R. Groupoids and crossed objects in algebraic topology. Homology Homotopy Appl. {\mathbf 1999}, 1 , 1--78 (electronic).
- ↑ Brown, R. Topology and Groupoids ; BookSurge, LLC: Charleston, SC, 2006.
- ↑ Brown, R. Exact sequences of fibrations of crossed complexes, homotopy classif\/ication of maps, and nonabelian extensions of groups. J. Homotopy Relational Struct. {\mathbf 2008}, 3 , 331--342.
- ↑ Brown, R. Crossed complexes and higher homotopy groupoids as noncommutative tools for higher dimensional local-to-global problems. In Handbook of Algebra . Vol.6 , 83--124; Michiel Hazewinkel, Editor; Elsevier:North-Holland: Amsterdam, 2009. See also the previous lecture presented by R. Brown in Categorical Structures for Descent, Galois Theory, Hopf algebras and semiabelian categories. ; Fields Institute, September 23-28, 2002. Fields Institute Communications {\mathbf 2004} 43 , 101-130.
- ↑ Brown, R.; and Gilbert, N. D. Algebraic models of {}-types and automorphism structures for crossed modules. Proc. London Math. Soc. (3) {\mathbf 1989},59 ~(1) 51--73.
- ↑ Brown, R.; Glazebrook, J.F.; Baianu, I.C. A categorical and higher dimensional algebra framework for complex systems and spacetime structures. Axiomathes {\mathbf 2008}, 17 , 409--493.
- ↑ Brown, R.; Hardie K.; Kamps, H.; Porter T. The homotopy double groupoid of a Hausdorff space. Theory Appl. Categ. {\mathbf 2002}, 10 , 71--93.
- ↑ 54.0 54.1
Brown, R.; Kamps, H.; Porter T. A homotopy double groupoid of a Hausdorff space II: a van Kampen theorem. Theory and Applications of Categories {\mathbf (2005)}, 14 , 200-220.
Cite error: Invalid
<ref>tag; name "Brown-etal2k2" defined multiple times with different content - ↑ Brown, R.; and Higgins, P.J. The algebra of cubes. J. Pure Appl. Alg. {\mathbf 1981}, 21 , 233–260.
- ↑ Brown, R.; Higgins, P. J. Tensor products and homotopies for -groupoids and crossed complexes. J. Pure Appl. Algebra ,(1987), {\mathbf 47},1--33.
- ↑ Brown, R.; Higgins, P. J.; and Sivera, R. {\em Nonabelian Algebraic Topology: filtered spaces, crossed complexes, cubical homotopy groupoids}. European Math. Soc. Tracts Vol 15 : {\mathbf (2011)};available at:
- ↑ Brown, R.; Janelidze, G. Galois theory and a new homotopy double groupoid of a map of spaces. Appl. Categ. Structures {\mathbf 2004},12 , 63--80.
- ↑ Brown, R.; Janelidze, G. Van Kampen theorems for categories of covering morphisms in lextensive categories. J. Pure Appl. Algebra {\mathbf 1997}, {\em119} , 255--263.
- ↑ Brown, R.; Loday, J.-L. Van Kampen theorems for diagrams of spaces. Topology {\mathbf 1987}, 26 , 311--335.
- ↑ Brown, R.; Loday, J.-L. Homotopical excision, and Hurewicz theorems for -cubes of spaces. Proc. London Math. Soc. (3) {\mathbf 1987},54 ,176--192..
- ↑ Brown, R.; Mosa G.H. Double algebroids and crossed modules of algebroids. Preprint ; University of Wales-Bangor, 1986.
- ↑ Brown, R.; and Porter, T. The intuitions of higher dimensional algebra for the study of structured space. Revue de Synth\`ese {\mathbf 2003}, 124 , 174--203.
- ↑ Brown, R.; and Razak~Salleh, A. A van Kampen theorem for unions of nonconnected spaces.Arch. Math. (Basel) {\mathbf 1984}, 42 ~(1), 85--88.
- ↑ Brown, R.; Spencer, C.B. Double groupoids and crossed modules. Cahiers Top. G\'eom. Diff\'erentielle {\mathbf 1976}, 17 , 343--362.
- ↑ Brown, R.; Spencer, C.B. -groupoids, crossed modules and the fundamental groupoid of a topological group. Indag. Math. {\mathbf 1976},38 296--302.
- ↑ Buneci, M. R. Groupoid Representations. (ro only : orig. title ""Reprezentari de Grupoizi ); Ed. Mirton: Timishoara , 2003.
- ↑ Buneci, M. R. The structure of the Haar systems on locally compact groupoids, Math. Phys. Electron. J. {\mathbf 2002}, 8 , Paper~4, 11~pages.
- ↑ Buneci, M.R. Consequences of the Hahn structure theorem for Haar measure, Math. Rep. (Bucur.) {\mathbf 2002}, 4(54) , 321--334.
- ↑ Buneci, M. R. Amenable unitary representations of measured groupoids, Rev. Roumaine Math. Pures Appl. {\mathbf 2003}, 48 , 129--133.
- ↑ Buneci, M. R. Invariant means on groupoids, Rev. Roumaine Math. Pures Appl. {\mathbf 2003}, 48 ,13--29.
- ↑ Buneci, M. R. Groupoid algebras for transitive groupoids, Math. Rep. (Bucur.) {\mathbf 2003}, 5(55) , 9--26.
- ↑ Buneci, M. R. Haar systems and homomorphism on groupoids., In {\em Operator Algebras and \\ Mathematical Physics (Constantza, 2001)}; Editors: J.-M.; Combes, J.; Cuntz, G.; Elliott, Gh.; \\ Nenciu, H.; Siedentop, R. ; and S.~Stratila, S; Theta: Bucharest, 2003;pp. 35--49.
- ↑ Buneci, M. R. Necessary and sufficient conditions for the continuity of a pre-Haar system at a unit with singleton orbit. Quasigroups and Related Systems {\mathbf 2004}, 12 , 29--38.
- ↑ Buneci, M. R. Isomorphic groupoid -algebras associated with different Haar systems. New York J. Math. {\mathbf 2005},11 , 225--245,
- ↑ Buneci, M. R. The equality of the reduced and the full -algebras and the amenability of a topological groupoid. In Recent Advances in Operator Theory, Operator Algebras, and Their Applications , Oper. Theory Adv. Appl. , Vol.153 , Birkh\"auser: Basel, 2005;p.61--78.
- ↑ Buneci, M. R. Groupoid -algebras. Surveys in Math. and its Appl. {\mathbf 2006}, 1 , 71--98.
- ↑ Buneci, M. R. A Review of Groupoid -algebras and Groupoid Representations. Preprint, 2009;\\
- ↑ Buneci, M. R. Representations of Double Groupoids. Preprint, 2010;(personal communication from M.R. Buneci ).
- ↑ Butterfield, J.; Isham, C.J. A topos perspective on the Kochen--Specker theorem. I.~Quantum states as generalized valuations. Internat. J. Theoret. Phys. {\mathbf 1998},37 , 2669--2733, Butterfield, J.; Isham, C.J. A topos perspective on the Kochen--Specker theorem. II.~Conceptual aspects and classical analogues' Internat. J. Theoret. Phys. {\mathbf 1999},38 , 827--859, Butterfield, J.; Isham, C.J. A topos perspective on the Kochen--Specker theorem. III.~Von Neumann algebras as the base category' Internat. J. Theoret. Phys. {\mathbf 2000},39 , 1413--1436. Butterfield, J.; Isham, C.J., A topos perspective on the Kochen--Specker theorem. IV.~Interval valuations. Internat. J. Theoret. Phys. {\mathbf 2002},41 , 613--639.
- ↑ Byczuk, K.; Hofstetter, W.; Vollhardt, D. Mott--Hubbard transition vs.\ Anderson localization of correlated, disordered electrons. Phys. Rev. Lett. {\mathbf 2005},94 , 401--404.
- ↑ Carter, J.S.; Saito, M. Knotted surfaces, braid moves, and beyond. In Knots and Quantum Gravity ; Riverside, CA, 1993; Oxford Lecture Ser. Math. Appl. , Vol.1 ; Oxford Univ. Press: New York, 1994;pp. 191--229.
- ↑ Carter, J.S.;Flath, D.E.; Saito, M. The Classical and Quantum -symbols . Mathematical Notes 43 ; Princeton University Press: Princeton, NJ, 1995;pp.164.
- ↑ Chaician, M.; Demichev, A. Introduction to quantum groups .; World Scientific Publishing Co., Inc.: River Edge, NJ, 1996.
- ↑ Chari, V.; Pressley, A. A Guide to Quantum Groups ; Cambridge University Press: Cambridge, UK, 1994. Template:ISBN.
- ↑ Chamon, C. Quantum glassiness in strongly correlated clean systems: an example of topological overprotection. Phys. Rev. Lett. {\mathbf 2005},{\mathbf 94}, 398--402, 4~pages.
- ↑ Chowdury, A. E.; Choudury, A. G.; Quantum Integrable Systems , Chapman and Hall Research Notes in Math. , {\mathbf 435}; CRC Press: London-New York, 2004.
- ↑ Coleman, P.; De Luccia, F. Gravitational effects on and of vacuum decay. Phys. Rev. D {\mathbf 1980},21 , 3305--3309.
- ↑ Connes, A. Sur la th\'eorie non-commutative de l'int\'egration, in Alg\`ebres d'op\'erateurs. S\'em., Les Plans-sur-Bex {\mathbf 1978}, Lecture Notes in Math. , Vol.{\mathbf 725}; Springer:Berlin, 1979; pp.19--143.
- ↑ Connes, A. Noncommutative geometry ; Academic Press, Inc.: San Diego, CA, 1994.
- ↑ Crane, L.; Frenkel, I.B. Four-dimensional topological quantum field theory. Hopf categories, and the canonical bases. Topology and physics. J. Math. Phys. (1994),{\mathbf 35}, 5136--5154.
- ↑ Crane, L.; Kauffman, L.H.; Yetter, D.N. State-sum invariants of 4-manifolds. J. Knot Theory Ramifications {\mathbf 1997},6 ,177--234.
- ↑ Crowell, R.~H. On the van {K}ampen theorem. Pacific J. Math. {\mathbf 1959}, 9 ,43--50.
- ↑ Day, B.J.; Street, R. Monoidal bicategories and Hopf algebroids. Adv. Math. {\mathbf 1997},129 , 99--157.
- ↑ Day, B; and Strret, R. Quantum categories, star autonomy, and quantum groupoids, Galois theory, Hopf algebras, and semiabelain categories, Fields Inst. Commun., 43 , Amer. Math. Soc. ; Providence, RI, 2004; pp. 187--225.
- ↑ Deligne, P. Cat\'egories tensorielles Moscow Math. J. {\mathbf 2002}, 2 , 227--248.
- ↑ Deligne, P.; Morgan, J.W. Notes on supersymmetry (following Joseph Berenstein). In Quantum Fields and Strings: a Course for Mathematicians ; Princeton, NJ, 1996/1997); Editors J.W.~Morgan et al., Vols. 1, 2 ,Amer. Math. Soc. : Providence RI, 1999;pp. 41--97.
- ↑ Dennis, E.; Kitaev, A.; Landahl, A.; Preskill J. Topological quantum memory. J. Math. Phys. {\mathbf 2002},43 , 4452--4459,
- ↑ Dixmier, J. Les -alg\`ebras et leurs repr\'esentations. Deuxi\`eme \`edition, {\it Cahiers Scientifiques}, Fasc.XXIX ; Gauthier-Villars \'Editeur: Paris, 1969.
- ↑ Doebner, H.-D.; Hennig, J. D.; Editors. Quantum groups . In Proceedings of the 8th International Workshop on Mathematical Physics ; Arnold Sommerfeld Institute: Clausthal; Springer-Verlag Berlin, 1989, Template:ISBN .
- ↑ Drechsler, W.;Tuckey, P.A. On quantum and parallel transport in a Hilbert bundle over spacetime. Classical Quantum Gravity {\mathbf 1996},13 , 611--632.
- ↑ Drinfel'd, V.G. Quantum groups. Iin Proceedings Intl. Cong. of Mathematicians , Vols. 1, 2 ; Berkeley, Calif., 1986; Editor A. Gleason. Amer. Math. Soc. : Providence, RI, 1987; pp.798--820.
- ↑ Drinfel'd, V.G. Structure of quasi-triangular quasi-Hopf algebras, Funct. Anal. Appl. {\mathbf 1992},26 , 63--65.
- ↑ Dupr\'{e}, M. J.; The Classification and Structure of -algebra bundles . Mem. Amer. Math. Soc. {\mathbf 1979} 21 , 222; Amer. Math. Soc.: Providence, RI.
- ↑ Ellis, G.J. Higher dimensional crossed modules of algebras. J. Pure Appl. Algebra {\mathbf 1988},52 , 277--282.
- ↑ Ellis, G.~J. and Steiner, R. Higher-dimensional crossed modules and the homotopy groups of -ads. \newblock J. Pure Appl. Algebra {\mathbf 1987} 46 ~(2-3), 117--136.
- ↑ Etingof, P. I.; Ostrik, V. Finite tensor categories. Preprint {\mathbf2003}, 26 pages, arXiv:math/0301027v2 [math.QA].
- ↑ Etingof, P. I.; Varchenko, A.N. Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups. Commun. Math. Phys. 1998 196 , 591--640.
- ↑ Etingof, P.I.; Varchenko, A. N. Exchange dynamical quantum groups. Commun. Math. Phys. 1999 , 205 (1), 19--52.
- ↑ Etingof, P.I.; Schiffmann, O. Lectures on the dynamical Yang--Baxter equations. In Quantum Groups and Lie Theory ; Durham, 1999. {\it London Math. Soc. Lecture Note Ser.}, 290 ; Cambridge Univ. Press: Cambridge, 2001;pp. 89--129.
- ↑ Evans, D. E.; Kawahigashi, Y. Quantum symmetries on operator algebras ;The Clarendon Press; Oxford University Press: New York, 1998.
- ↑ Eymard, P. L'alg\`ebre de Fourier d'un groupe localement compact. Bull. Soc. Math. France {\mathbf 1964} 92 ,181--236.
- ↑ Faria~Martins, J.; and Picken, R. A cubical set approach to2 -bundles with connection and Wilson surfaces. {\mathbf 2010}, arXiv/CT 0808.3964v3 , 1--59.
- ↑ Fauser, B. A treatise on quantum Clifford algebras.; Konstanz, Habilitationsschrift. \\
- ↑ Fauser, B. Grade free product formulae from Grassman--Hopf gebras. In Clifford Algebras: Applications to Mathematics, Physics and Engineering ; Editor R. Ablamowicz. Prog. Math. Phys. , 34 ; Birkh\"{a}user: Boston, MA, 2004;pp.279--303;
- ↑ Fell, J.M.G. The dual spaces of -algebras. Trans. Amer. Math. Soc. {\mathbf 1960},94 , 365--403.
- ↑ Fernandez, F.M.; Castro, E.A. Lie algebraic methods in quantum chemistry and physics. {\it Mathematical Chemistry Series}, CRC Press, Boca Raton, FL, 1996.
- ↑ Feynman, R.P. Space-time approach to non-relativistic quantum mechanics. Rev. Modern Phys. (1948), {\mathbf 20}, 367--387.
- ↑ Fradkin, E.; Huberman, S.; Shenker, S. Gauge symmetries in random magnetic systems. Phys. Rev. B {\mathbf1978}, 18 , 4783-4794. http://prh.aps.org/abstract/PRB/v18/i9/p4879-1 .
- ↑ Freedman, M.H; Kitaev, A.; Larsen, M.J.; Wang Z. Topological quantum computation. Bull. Amer. Math. Soc. (N.S.) {\mathbf 2003},{\mathbf 40}, 31--38.
- ↑ Fr{\"o}hlich, A. Non-Abelian homological algebra. I.~Derived functors and satellites, Proc. London Math. Soc.~(3) {\mathbf 1961},11 , 239--275.
- ↑ Gel'fand, I.; Neumark, M. On the Imbedding of Normed Rings into the Ring of Operators in Hilbert Space. {\it Rec. Math. [Mat. Sbornik] N.S.} {\mathbf 1943}, 12 (54) ,197--213. Reprinted in -algebras {\mathbf1943--1993}, Contemp. Math. {\mathbf 1994},167 ; American Mathematical Society: Providence RI.)
- ↑ Georgescu, G. -valued logics and \L ukasiewicz--Moisil algebras. Axiomathes {\mathbf 2006},16 , 123--136.
- ↑ Georgescu, G.; Popescu, D. On algebraic categories, Rev. Roumaine Math. Pures Appl. {\mathbf 1968},13 , 337--342.
- ↑ Gilmore, R. Lie groups, Lie algebras and some of their applications. ; Dover Publs. Inc.: Mineola~-- New York, 2005.
- ↑ Girelli, F.; Pfeiffer, H.; Popescu, E. M. Topological higher gauge theory: from to theory. (English summary) J. Math. Phys. {\mathbf 2008} {\mathbf 49} (2008), no. 3,, 17 pp. 032503.
- ↑ Goldblatt, R. Topoi: The Categorial Analysis of Logic ; Dover Books on Mathematics; North-Holland,1984;pp.568
- ↑ Grabowski, J.; Marmo, G. Generalized Lie bialgebroids and Jacobi structures. J. Geom Phys. {\mathbf 2001}, {\mathbf 40}, 176--199.
- ↑ Grandis, M.; Mauri, L. Cubical sets and their site, Theory Appl. Categ. {\mathbf 2003},11 , no.~8, 185--211.
- ↑ Grisaru, M.T.; Pendleton H.N. Some properties of scattering amplitudes in supersymmetric theories. Nuc\-lear Phys. B {\mathbf 1977},{\em1246}, 81--92.
- ↑ Grothendieck, A. Sur quelque point d-alg\`{e}bre homologique. T\^ohoku Math. J. (2) {\mathbf 1957},9 , 119--121.
- ↑ Grothendieck, A. Technique de descente et th\'eor\`emes d'existence en g\'eom\'etrie alg\'ebrique. II. S\'eminaire Bourbaki {\mathbf 1959-1960},12 ,exp.~195; Secr\'etariat Math\'ematique; Paris, 1961.
- ↑ Grothendieck, A. Technique de construction en g\'eom\'etrie analytique. IV. Formalisme g\'en\'eral des foncteurs repr\'esentables. S\'eminaire H. Cartan {\mathbf 1960-61},13 , exp.~11;Secr\'{e}tariat Math\'ematique: Paris, 1962.
- ↑ Grothendieck, A. Rev\^{e tements \'Etales et Groupe Fondamental (SGA1)}, chapter VI: Cat\'egories f\/ibr\'ees et descente, Lecture Notes in Math. , Vol.~224 ; Springer-Verlag: Berlin, 1971.
- ↑ Grothendieck, A.; Dieudonn\'{e}, J. El\'{e ments de geometrie alg\`{e}brique}. Publ. Inst. des Hautes \'Etudes de Science {\mathbf 1960},4 , 5--365. Grothendieck, A.; Dieudonn\'{e}, J. \'Etude cohomologique des faisceaux coherents. {\it Publ. Inst. des Hautes \'Etudes de Science} {\mathbf 1961},11 , 5--167.
- ↑ Gu, Z.-G.; Wen, X.-G. A lattice bosonic model as a quantum theory of gravity.
- ↑ Hahn, P. Haar measure for measure groupoids. Trans. Amer. Math. Soc. {\mathbf 1978},242 , 1--33.
- ↑ Hahn, P. The regular representations of measure groupoids. Trans. Amer. Math. Soc. {\mathbf 1978},242 , 34--72.
- ↑ Harrison, B.K. The differential form method for finding symmetries. SIGMA {\mathbf 2005}, {\mathbf 1}, 001, 12~pages.
- ↑ Hazewinkel, A. (Editor). Handbook of algebra. Vol.~4 ; Elsevier: St. Louis, Chatswood~-- Singapore, 2006.
- ↑ Heynman, R.; Lifschitz S. Lie groups and Lie algebras.; Nelson Press: New York~-- London, 1958.
- ↑ Heunen, C.; Landsman, N. P.; and Spitters, B. A topos for algebraic quantum theory. {\mathbf 2008}; 12 pages. arXiv:0709.4364v2 [quant--ph] .
- ↑ Hindeleh, A.M.; Hosemann, R. Paracrystals representing the physical state of matter. Solid State Phys. (1988), {\mathbf 21}, 4155--4170.
- ↑ Hosemann, R.; and Bagchi, R.N. Direct analysis of diffraction by matter. ; North-Holland Publs.: Amsterdam~-- New York, 1962.
- ↑ Hosemann, R.; Vogel W.; Weick, D.; Balta-Calleja, F.J. Novel aspects of the real paracrystal. Acta Cryst.~A {\mathbf 1981}, {\mathbf 376}, 85--91.
- ↑ Ionescu, Th.V.; Parvan, R.; and Baianu, I. Les oscillations ioniques dans les cathodes creuses dans un champ magnetique. C.R.Acad.Sci.Paris . {\mathbf 1969}, {\mathbf 270}, 1321--1324; (paper communicated by Nobel laureate Louis Ne\'el ).
- ↑ Isham, C.J.; Butterfield, J. Some possible roles for topos theory in quantum theory and quantum gravity. Found. Phys. {\mathbf 2000},30 , 1707--1735.
- ↑ Janelidze, G. Precategories and Galois theory. In Category theory ; Como, 1990. Springer Lecture Notes in Math. , Vol.~1488 ; Springer: Berlin, 1991;pp. 157--173.
- ↑ Janelidze, G. Pure Galois theory in categories. J. Algebra (1990), {\mathbf 132}, 270--286.
- ↑ Jimbo, M. A -difference analogue of and the Yang--Baxter equations. Lett. Math. Phys. (1985), {\mathbf 10},63--69.
- ↑ Jones, V. F. R. Index for Subfactors. Invetiones Math. {\mathbf 1989} {\mathbf 72},1--25. Reprinted in: New Developments in the Theory of Knots. ; World Scientific Publishing: Singapore,1989.
- ↑ Joyal, A.; Street R. Braided tensor categories. Adv. Math. (1995), 102 , 20--78.
- ↑ Kac, V. Lie superalgebras. Adv. Math. {\mathbf 1977}, {\mathbf 26}, 8--96.
- ↑ Kamps, K. H.; Porter, T. A homotopy 2--groupoid from a fibration. Homotopy, Homology and Applications. (1999), {\mathbf 1}, 79--93.
- ↑ Kapitsa, P. L. Plasma and the controlled thermonuclear reaction. The Nobel Prize lecture in Physics 1978 , in Nobel Lectures, Physics 1971--1980 ; Editor S.~Lundqvist; World Scientific Publishing Co.: Singapore, 1992.
- ↑ Kauffman, L. Spin Networks and the Jones Polynomial. Twistor Newsletter, No.29 ; Mathematics Institute: Oxford, November 8th, 1989.
- ↑ Kauffman, L. --Spin Networks. Twistor Newsletter, No.32 ; Mathematics Institute: Oxford, March 12th, 1989.
- ↑ Khoroshkin, S.M.; Tolstoy, V.N. Universal -matrix for quantum supergroups. In Group Theoretical Methods in Physics ; Moscow, 1990; Lecture Notes in Phys. , Vol.~382; Springer: Berlin, 1991;pp. 229--232.
- ↑ Kirilov, A.N.; and Reshetikhin, N. Yu. Representations of the Algebra , -Orthogonal Polynomials and Invariants of Links. Reprinted in: New Developments in the Theory of Knots. ; Kohno, Editor; World Scientific Publishing, 1989.
- ↑ Klimyk, A. U.; and Schm\"udgen, K. Quantum Groups and Their Representations. ; Springer--Verlag: Berlin, 1997.
- ↑ Korepin, V. E. Completely integrable models in quasicrystals. Commun. Math. Phys. {\mathbf 1987}, 110 , 157--171.
- ↑ Kustermans, J.; Vaes, S. The operator algebra approach to quantum groups. Proc. Natl. Acad. Sci. USA {\mathbf 2000}, 97 , 547--552.
- ↑ Lambe, L.A.; Radford, D.E. Introduction to the quantum Yang--Baxter equation and quantum groups: an algebraic approach. Mathematics and its Applications , Vol.~423 ; Kluwer Academic Publishers: Dordrecht, 1997.
- ↑ Lance, E.C. Hilbert -modules. A toolkit for operator algebraists. London Mathematical Society Lecture Note Series , Vol.~210 ; Cambridge University Press: Cambridge, 1995.
- ↑ Landsman, N.P. Mathematical topics between classical and quantum mechanics. Springer Monographs in Mathematics ; Springer-Verlag: New York, 1998.
- ↑ Landsman, N.P. Compact quantum groupoids, in Quantum Theory and Symmetries (Goslar, July 18--22, 1999), Editors H.-D.~Doebner et al., World Sci. Publ., River Edge, NJ, 2000, 421--431,
- ↑ Landsman, N.P.; Ramazan, B. Quantization of Poisson algebras associated to Lie algebroids, in Proc. Conf. on Groupoids in Physics, Analysis and Geometry: Boulder CO, 1999 ; Editors: J.~Kaminker et al., Contemp. Math. {\mathbf 2001},282 , 159--192.
- ↑ Lawrence, R.L. Algebra and Triangle Relations. In: Topological and Geometric Methods in Field Theory ; Editors: J. Michelsson and O.Pekonen; World Scientific Publishing,1992;pp.429-447. J.Pure Appl. Alg. {\mathbf 1995}, 100 , 245-251.
- ↑ Lee, P.A.; Nagaosa, N.; Wen, X.-G. Doping a Mott insulator: physics of high temperature superconductivity.{\mathbf 2004}.
- ↑ Levin, A.; Olshanetsky, M. Hamiltonian Algebroids and deformations of complex structures on Riemann curves. {\mathbf 2008}, hep--th/0301078v1.
- ↑ Levin, M.; Wen, X.-G. Fermions, strings, and gauge fields in lattice spin models. Phys. Rev. B {\mathbf 2003}, 67 , 245316, 4~pages.
- ↑ Levin, M.; Wen, X.-G. Detecting topological order in a ground state wave function. Phys. Rev. Lett. {\mathbf 2006}, 96 , 110405, 4~pages.
- ↑ Levin M.; Wen, X.-G. Colloquium: photons and electrons as emergent phenomena. Rev. Modern Phys. {\mathbf 2005}, 77 , 871--879.
- ↑ Levin, M.; Wen, X.-G. Quantum ether: photons and electrons from a rotor model. Phys. Rev. B {\mathbf 2006}, 73 , 035122, 10~pages.
- ↑ Loday, J.L. Spaces with f\/initely many homotopy groups. J. Pure Appl. Algebra {\mathbf 1982},24 , 179--201.
- ↑ Lu, J.-H. Hopf algebroids and quantum groupoids. Internat. J. Math. {\mathbf 1996}, 7 , 47--70.
- ↑ Mack, G.; Schomerus, V. Quasi Hopf quantum symmetry in quantum theory. Nuclear Phys. B {\mathbf 1992}, 370 , 185--230.
- ↑ Mackaay, M.; Picken, P. State-sum models, gerbes and holonomy. In Proceedings of the XII Fall Workshop on Geometry and Physics , Publ. R. Soc. Mat. Esp. , Vol.~7 : Madrid, 2004;pp. 217--221.
- ↑ Mackaay, M. Spherical 2-categories and 4-manifold invariants. Adv. Math. {\mathbf 1999},143 , 288--348.
- ↑ Mackenzie, K. C. H. General theory of Lie groupoids and Lie algebroids. London Mathematical Society Lecture Note Series , Vol.~213 ; Cambridge University Press: Cambridge, 2005.
- ↑ Mackey, G.W. The scope and history of commutative and noncommutative harmonic analysis. History of Mathematics , Vol.5 ; American Mathematical Society: Providence, RI; London Mathematical Society: London, 1992.
- ↑ Mac Lane, S. Categorical algebra. Bull. Amer. Math. Soc. (1965), 40--106.
- ↑ Mac Lane, S.; Moerdijk, I. Sheaves in geometry and logic. A first introduction to topos theory. ; Springer Verlag: New York, 1994.
- ↑ Majid,S. Foundations of Quantum Group Theory. ;Cambridge Univ. Press: Cambridge UK, 1995.
- ↑ Maltsiniotis, G. Groupo\"{\i}des quantiques. C. R. Acad. Sci. Paris S\'er. I Math. {\mathbf 1927}, 314 , 249--252.
- ↑ Manojlovi\', N.; Sambleten, H. Schlesinger transformations and quantum R-matrices. Commun. Math. Phys. {\mathbf 2002}, 230 , 517--537.
- ↑ Miranda, E. Introduction to bosonization. Brazil. J. Phys. {\mathbf 2003}, 33 , 1--33. (http://www.ifi.unicamp.br/~emiranda/papers/bos2.pdf).
- ↑ Mitchell, B. The theory of categories. Pure and Applied Mathematics , Vol. 17 ; Academic Press: New York and London, 1965.
- ↑ Mitchell, B. Rings with several objects. Adv. Math. {\mathbf 1972}, 8 , 1--161.
- ↑ Mitchell, B. Separable algebroids. Mem. Amer. Math. Soc. , {\mathbf 1985}, 57 , no.333.
- ↑ Moerdijk, I.; Svensson, J.A. Algebraic classification of equivariant 2-types. J. Pure Appl. Algebra {\mathbf 1993}, 89 , 187--216.
- ↑ Mosa, G.H. Higher dimensional algebroids and Crossed complexes. PhD Thesis; University of Wales: Bangor, 1986.
- ↑ Mott, N.F. Electrons in glass , Nobel Lecture, 11 pages, December 8, 1977.
- ↑ Mott, N.F. Electrons in solids with partial disorder. Lecture presented at The Cavendish Laboratory : Cambridge, UK, 1978.
- ↑ Mott, N.F.; Davis, E.A. {Electronic processes in non-crystalline materials}; Oxford University Press: Oxford, 1971; 2nd ed., 1978.
- ↑ Mott, N.F.; et al. The Anderson transition. Proc. Royal Soc. London Ser. A (1975), {\mathbf 345}, 169--178.
- ↑ Moultaka, G.; Rausch, M. de Traubenberg; T\u{a}nas\u{a}, A. Cubic supersymmetry and abelian gauge invariance. Internat. J. Modern Phys. A {\mathbf 2005}, 20 , 5779--5806.
- ↑ Mr\vun, J. On spectral representation of coalgebras and Hopf algebroids.
- ↑ Mr\vun, J. On the duality between \'{e}tale groupoids and Hopf algebroids. J. Pure Appl. Algebra (2007), {\mathbf 210}, 267--282.
- ↑ Muhly, P.; Renault, J.; Williams, D. Equivalence and isomorphism for groupoid -algebras. J. Operator Theory , {\mathbf 1987}, 6 , 3--22.
- ↑ Meusberger, C. Quantum double and -Poincar\'{e} symmetries in -gravity and Chern-Simons theory. Can. J. Phys. 2009 , 87 , 245--250.
- ↑ Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Das Sarma, S. Non-Abelian anyons and topological quantum computation. {\it Rev. Modern Phys.} {\mathbf 2008}, 80 ,1083, 77~pages.
- ↑ Nikshych, D.A.; Vainerman, L. A characterization of depth 2 subfactors of factors. J. Funct. Anal. {\mathbf 2000}, 171 , 278--307.
- ↑ Nishimura, H. Logical quantization of topos theory. Internat. J. Theoret. Phys. {\mathbf 1996}, 35 , 2555--2596.
- ↑ Neuchl, M. Representation theory of Hopf categories . PhD Thesis: University of M\"unich, 1997.
- ↑ Noether, E. Invariante Variationsprobleme. Nachr. D. K\"onig. Gesellsch. D. Wiss. Zu G\"ottingen, Math-phys. Klasse {\mathbf 1918}, 235–257.
- ↑ Norrie, K. Actions and automorphisms of crossed modules. Bull. Soc. Math. France {\mathbf 1990}, 118 ~(2), 129--146.
- ↑ Ocneanu, A. Quantized groups, string algebras and Galois theory for algebras. In Operator algebras and applications. , 2 London Math. Soc. Lecture Note Ser., 136 ; Cambridge Univ. Press: Cambridge,1988;pp. 119-172.
- ↑ Ocneanu, A. Operator algebras, topology and subgroups of quantum symmetry~-- construction of subgroups of quantum groups. In Taniguchi Conference on Mathematics Nara '98 , Adv. Stud. Pure Math. ,{\mathbf 2001}, 31 , Math. Soc. Japan : Tokyo;pp. 235--263.
- ↑ Ostrik, V. Module categories over representations of in the non-simple case. Geom. Funct. Anal. {\mathbf 2008}, 17 , 2005--2017.
- ↑ Patera, J. Orbit functions of compact semisimple, however, as special functions. Iin Proceedings of Fifth International Conference "Symmetry in Nonlinear Mathematical Physics" (June 23--29, 2003: Kyiev); Editors: A.G.~Nikitin; V.M.~Boyko; R.O.~Popovych; and I.A.~Yehorchenko. Proceedings of the Institute of Mathematics, Kyiev {\mathbf 2004}, 50 , Part~1, 1152--1160.
- ↑ Paterson, A.L.T. Groupoids, inverse semigroups, and their operator algebras. Progress in Mathematics , 170 ; Birkh\"auser Boston, Inc.: Boston, MA, 1999.
- ↑ Paterson, A.L.T. The Fourier--Stieltjes and Fourier algebras for locally compact groupoids.\\ In Trends in Banach Spaces and Operator Theory, (Memphis, TN, 2001 , \Contemp. Math. {\mathbf 2003}, 321 , 223--237.
- ↑ Paterson, A.L.T. Graph inverse semigroups, groupoids and their -algebras. J. Operator Theory {\mathbf 2002}, 48 , 645--662.
- ↑ Penrose, R. The role of aestetics in pure and applied mathematical research. Bull. Inst. Math. Appl. {\mathbf 1974}, 10 , 266--271.
- ↑ Penrose, R. Applications of Negative Dimensional Tensors ; In Welsh, Editor. Combinatorial Mathematics and its Applications ; Academic Press: London, 1971.
- ↑ Perelman, G. The entropy formula for the Ricci flow and its geometric applications.\\
- ↑ Plymen, R.J.; Robinson, P.L. Spinors in Hilbert space. Cambridge Tracts in Mathematics , Vol.~{\mathbf 114}; Cambridge University Press: Cambrige, 1994.
- ↑ Podles, P. Symmetries of quantum spaces. Subgroups and quotient spaces of quantum and groups. Commun. Math. Phys. {\mathbf 1995}, 170 , 1-20.
- ↑ Poincar{\'e}, H. {\OE uvres. Tome VI }; Les Grands Classiques Gauthier-Villars. \'Editions; Jacques Gabay: \\ Sceaux ,1996. G\'eom\'etrie. Analysis situs (topologie) ; reprint of the 1953 edition.
- ↑ Popescu, N. The theory of Abelian categories with applications to rings and modules. London Mathematical Society Monographs , no.~3; Academic Press: London-- New York, 1973.
- ↑ Porter, T. Topological quantum field theories from homotopy --types. (English summary) J. London Math. Soc. (2) {\mathbf 1998}, 58 , no. 3, 723--732.
- ↑ Porter, T.; and Turaev, V. \newblock Formal Homotopy Quantum Field Theories {I}: Formal maps and crossed {-}algebras. \newblock Journal Homotopy and Related Structures ) {\mathbf 2008}, 3 ~(1), 113--159.
- ↑ Prigogine, I. From being to becoming time and complexity in the physical sciences. ; W. H. Freeman and Co.: San Francisco, 1980.
- ↑ Pronk, D. Groupoid representations for sheaves on orbifolds. PhD Thesis: University of Utrecht, 1995.
- ↑ Radin, C. Symmetries of Quasicrystals. Journal of Statistical Physics {\mathbf 1999}, {\mathbf 95}, Nos 5/6, 827--833.
- ↑ Ramsay, A. Topologies on measured groupoids. J. Funct. Anal. {\mathbf 1982}, 47 , 314--343.
- ↑ Ramsay, A.; Walter, M.E. Fourier--Stieltjes algebras of locally compact groupoids. J. Funct. Anal. ,{\mathbf 1997},148 , 314--367.
- ↑ Ran, Y.; Wen, X.-G. Detecting topological order through a continuous quantum phase transition. Phys. Rev Lett. , {\mathbf 2006}, 96 , 026802, 4~pages.
- ↑ Raptis I.; Zapatrin, R.R. Quantization of discretized spacetimes and the correspondence principle. Internat. J. Theoret. Phys. {\mathbf 2000}, 39 , 1--13.
- ↑ Reshetikhin, N.;Tureaev, V. Invariants of 3-Manifolds via Link Polynomials. Inventiones Math. {\mathbf 1991}, 103 , 547-597.
- ↑ Rehren, H.-K. Weak -Hopf symmetry. In Proceedings of Quantum Group Symposium at Group 21 ; Goslar, 1996; Heron Press: Sofia, 1997;pp. 62--69.
- ↑ Regge, T. General relativity without coordinates. Nuovo Cimento (10) {\mathbf 1961}, 19 , 558--571.
- ↑ Renault, J. A groupoid approach to -algebras. Lecture Notes in Mathematics , Vol.~793 ; Springer: Berlin,1980.
- ↑ Renault, J. Repr\'esentations des produits crois\'es d'alg\`ebres de groupo\"{\i}des. J. Operator Theory {\mathbf 1987}, 18 , 67--97.
- ↑ Renault, J. The Fourier algebra of a measured groupoid and its multiplier. J. Funct. Anal. {\mathbf 1997}, 145 , 455--490.
- ↑ Ribeiro, T.C.; Wen, X.-G. New mean f\/ield theory of the model applied to the high- superconductors. Phys. Rev. Lett. {\mathbf 2005}, 95 , 057001, 4~pages.
- ↑ Rieffel, M.A. Group -algebras as compact quantum metric spaces. Doc. Math. {\mathbf 2002}, 7 , 605--651.
- ↑ Rieffel, M.A. Induced representations of -algebras. Adv. Math. {\mathbf 1974}, 13 , 176--257.
- ↑ Roberts, J. E. More lectures on algebraic quantum field theory. In Noncommutative Geometry ;pp.263--342; Editors A. Connes et al., Springer lect. Notes in Math. 1831 ; Springer: Berlin, 2004.
- ↑ Roberts, J.E. Skein theory and Turaev--Viro invariants. Topology {\mathbf 1995}, 34 ,771--787.
- ↑ Roberts, J.E. Refined state-sum invariants of 3-and 4-manifolds. In Geometric Topology : Athens, GA, 1993, AMS/IP Stud. Adv. Math. , 2.1 , Amer. Math. Soc. ; Providence, RI, 1997;pp. 217--234.
- ↑ Rovelli, C. Loop quantum gravity. Living Rev. Relativ. {\mathbf 1998}, 1 , 68~pages.
- ↑ Sato, N.; Wakui, M. -dimensional topological quantum field theory with a Verlinde basis and Turaev--Viro--Ocneanu invariants of 3-manifolds. In Invariants of Knots and 3-Manifolds ; Kyoto, 2001. Geom. Topol. Monogr. , 4 ; Geom. Topol. Publ. : Coventry, 2002;pp. 281--294.
- ↑ Schreiber, U. Invited lecture in Workshop and School on Higher Gauge Theory, TQFT and Quantum Gravity, 2011 ; http://sites.google.com/site/hgtqgr/ ; Conference on Higher Gauge Theory, Quantum Gravity, and Topological Field Theory, December 18, 2010 ;\\ http://sbseminar.wordpress.com/2010/12/18/conference-on-higher-gauge-theory-quantum-gravity-TFT
- ↑ Schwartz, L. G\'en\'eralisation de la notion de fonction, de d\'erivation, de transformation de Fourier et applications math\'ematiques et physiques. Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.) {\mathbf 1945}, 21 , 57--74.
- ↑ Schwartz, L. Th\'eorie des distributions. Publications de l'Institut de Math\'ematique de l'Universit\'e de Strasbourg , no.~IX--X; Hermann: Paris, 1966.
- ↑ Schechtman, D.; Blech, L.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry. \em Phys. Rev. Lett. {\mathbf 1984}, 53 , 1951--1953.
- ↑ Seda, A.K. Haar measures for groupoids. Proc. Roy. Irish Acad. Sect. A {\mathbf 1976}, 76 , no.~5, 25--36.
- ↑ Seda, A.K. Banach bundles of continuous functions and an integral representation theorem. Trans. Amer. Math. Soc. {\mathbf 1982}, 270 , 327--332.
- ↑ Seda, A.K. On the Continuity of Haar measures on topological groupoids. Proc. Amer. Math. Soc. {\mathbf 1986}, 96 , 115--120.
- ↑ Segal, I.E. Irreducible representations of operator algebras. Bull. Amer. Math. Soc. {\mathbf 1947}, 53 , 73--88.
- ↑ Segal, I.E. Postulates for general quantum mechanics. Ann. of Math. (2) {\mathbf 1947}, 4 , 930--948.
- ↑ Seifert, H. Konstruction drei dimensionaler geschlossener Raume. Berichte S{\"a chs. {A}kad. {L}eipzig, Math.-Phys. Kl.} {\mathbf 1931}, 83 , 26--66.
- ↑ Serre, J. P. Lie Algebras and Lie Groups: 1964 Lectures given at Harvard University . Lecture Notes in Mathematics, 1500 ; Springer: Berlin, 1965.
- ↑ Sheu, A. J. L. Compact quantum groups and groupoid C*-algebras. J. Funct. Anal. {\mathbf 1997}, 144, no. 2 , 371--393.
- ↑ Sheu, A. J. L. The structure of quantum spheres. J. Funct. Anal. {\mathbf 2001}, 129, no. 11 , 3307--3311.
- ↑ Sklyanin, E.K. Some algebraic structures connected with the Yang--Baxter equation. Funktsional. Anal. i Prilozhen. {\mathbf 1997}, 6 ; {\mathbf 16} (1982), no.~4, 27--34.
- ↑ Sklyanin, E.K. Some algebraic structures connected with the Yang--Baxter equation. Representations of quantum algebras. Funct. Anal. Appl. {\mathbf 1984}, 17 , 273--284.
- ↑ Sklyanin, E. K. Some Algebraic Structures Connected with the Yang--Baxter equation. Funct. Anal. Appl. {\mathbf 1983}, 16 , 263--270.
- ↑ Street, R. The quantum double and related constructions. J. Pure Appl. Algebra {\mathbf 1998}, 132, no. 2 , 195--206.
- ↑ Stern, A.; Halperin, B.I. Proposed experiments to probe the non-Abelian quantum Hall state. Phys. Rev. Lett. {\mathbf 2006}, 96 , 016802, 4~pages.
- ↑ Stradling, R.A. Quantum transport. Phys. Bulletin {\mathbf 1978}, 29 , 559--562.
- ↑ Szlach\'anyi, K. The double algebraic view of f\/inite quantum groupoids. J. Algebra {\mathbf 2004}, {\em280}, 249--294.
- ↑ Sweedler, M.E. Hopf algebras. Mathematics Lecture Note Series ; W.A. Benjamin, Inc.: New York, 1969.
- ↑ T\u{a}nas\u{a}, A. Extension of the Poincar\'e symmetry and its field theoretical interpretation. SIGMA {\mathbf 2006}, 2 , 056, 23~pages.
- ↑ Taylor, J. Quotients of groupoids by the action of a group. Math. Proc. Cambridge Philos. Soc. (1988), {\mathbf 103}, 239--249.
- ↑ Tonks, A.P. Theory and applications of crossed complexes . PhD Thesis; University of Wales: Bangor, 1993.
- ↑ Tsui, D.C.; Allen, S.J. Jr. Mott--Anderson localization in the two-dimensional band tail of Si inversion layers. Phys. Rev. Lett. {\mathbf 1974}, 32 , 1200--1203.
- ↑ Turaev, V.G.; Viro, O.Ya. State sum invariants of 3-manifolds and quantum -symbols. Topology (1992), {\mathbf 31}, 865--902.
- ↑ van Kampen, E.H. On the connection between the fundamental groups of some related spaces. Amer. J. Math. (1933), {\mathbf 55}, 261--267.
- ↑ V\'arilly, J.C. An introduction to noncommutative geometry. EMS Series of Lectures in Mathematics ; European Mathematical Society (EMS): Z\"{u}rich, 2006.
- ↑ Weinberg, S. The quantum theory of fields., Vol. I. Foundations and Vol. II. Modern applications. ; Cambridge University Press: Cambridge, 1996-1997.
- ↑ Weinberg, S. The quantum theory of fields. Vol.~III. Supersymmetry ; Cambridge University Press: Cambridge, 2005.
- ↑ Weinstein, A. Groupoids: unifying internal and external symmetry. A tour through some examples.Notices Amer. Math. Soc. {\mathbf 1996}, 43 , 744--752.
- ↑ Wen, X.-G. Non-Abelian statistics in the fractional quantum Hall states. Phys. Rev. Lett. {\mathbf 1991}, 66 , 802--805.
- ↑ Wen, X.-G. Projective construction of non-Abelian quantum Hall liquids. Phys. Rev. B {\mathbf 1999}, 60 , 8827, 4~pages.
- ↑ Wen, X.-G. Quantum order from string-net condensations and origin of light and massless fermions.\\ Phys. Rev. D {\mathbf 2003}, 68 , 024501, 25~pages.
- ↑ Wen, X.-G.Quantum field theory of many--body systems -- from the origin of sound to an origin of\\ light and electrons ; Oxford University Press: Oxford, 2004.
- ↑ Wess, J.; Bagger, J. Supersymmetry and supergravity. Princeton Series in Physics ; Princeton University Press: Princeton, N.J., 1983.
- ↑ Westman, J.J. Harmonic analysis on groupoids. Pacific J. Math. {\mathbf 1968}, 27 , 621--632.
- ↑ Westman, J.J. Groupoid theory in algebra, topology and analysis ; University of California at Irvine, 1971.
- ↑ Wickramasekara, S.; Bohm, A. Symmetry representations in the rigged Hilbert space formulation of quantum mechanics. J. Phys. A: Math. Gen. {\mathbf 2002}, 35 , 807--829.
- ↑ Wightman, A.S. Quantum field theory in terms of vacuum expectation values. Phys. Rev. {\mathbf 1956}, 101 , 860--866.
- ↑ Wightman, A.S., Hilbert's sixth problem: mathematical treatment of the axioms of physics. In Mathematical Developments Arising from Hilbert Problems : Proc. Sympos. Pure Math. , Northern Illinois Univ., De Kalb, Ill., 1974. Amer. Math. Soc. : Providence, R.I., 1976;pp. 147--240.
- ↑ Wightman, A.S.; G\"arding, L. Fields as operator-valued distributions in relativistic quantum theory. Ark. Fys. {\mathbf 1964}, 28 , 129--184.
- ↑ Wigner, E. P. \emph {Gruppentheorie}; Friedrich Vieweg und Sohn: Braunschweig, Germany, 1931;pp. 251-254. Group Theory ; Academic Press Inc.: New York, 1959;pp. 233-236.
- ↑ Wigner, E. P. On unitary representations of the inhomogeneous Lorentz group. Annals of Mathematics {\mathbf 1939}, 40 (1), 149–204. doi:10.2307/1968551.
- ↑ Witten, E. Quantum field theory and the Jones polynomial. Comm. Math. Phys. {\mathbf 1989}, 121 , 351--355.
- ↑ Witten, E. Anti de Sitter space and holography. Adv. Theor. Math. Phys. {\mathbf 1998},2 , 253--291.
- ↑ Wood, E.E. Reconstruction Theorem for Groupoids and Principal Fiber Bundles. Intl. J. Theor. Physics 1997 36 (5), 1253-1267. DOI: 10.1007/BF02435815.
- ↑ Woronowicz, S.L. Twisted group. An example of a non-commutative differential calculus. Publ. Res. Inst. Math. Sci. (1987), {\mathbf 23}, 117--181.
- ↑ Woronowicz, S. L. Compact quantum groups. In Quantum Symmetries. Les Houches Summer School--1995, Session LXIV; Editors: A. Connes; K. Gawedzki; J. Zinn-Justin; Elsevier Science: Amsterdam,1998;pp. 845--884.
- ↑ Xu, P. Quantum groupoids and deformation quantization. C. R. Acad. Sci. Paris S\'{e r. I Math.} (1998), {\mathbf 326}, 289--294.
- ↑ Yang, C.N.; Mills, R.L. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. {\mathbf 1954}, 96 , 191--195.
- ↑ Yang, C.N. Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid He and of Superconductors.Rev. Mod. Phys. {\mathbf 1962}, 34 , 694–704.
- ↑ Yetter, D.N. TQFTs from homotopy 2-types. J. Knot Theory Ramifications {\mathbf 1993}, 2 , 113--123.
- ↑ Ypma, F. K-theoretic gap labelling for quasicrystals, Contemp. Math. {\mathbf 2007}, 434 , 247--255; Amer. Math. Soc. : Providence, RI,.
- ↑ Ypma, F. Quasicrystals, C*-algebras and K-theory . Msc. Thesis. {\mathbf 2004}: University of Amsterdam.
- ↑ Zhang, R.B. Invariants of the quantum supergroup . J. Phys. A: Math. Gen. {\mathbf 1991}, 24 , L1327--L1332.
- ↑ Zhang, Y.-Z.; Gould, M.D. Quasi-Hopf superalgebras and elliptic quantum supergroups, J. Math. Phys. {\mathbf 1999}, 40 , 5264--5282,