PlanetPhysics/Relation Theory
This article treats relations from the perspective of combinatorics, in other words, as a subject matter in discrete mathematics, with special attention to finite structures and concrete set-theoretic constructions, many of which arise quite naturally in applications. This approach to relation theory , or the theory of relations , is distinguished from, though closely related to, its study from the perspectives of [[../PAdicMeasure/|abstract algebra]] on the one hand and formal logic on the other.
Preliminaries
Two definitions of the relation [[../PreciseIdea/|concept]] are common in the literature. Although it is usually clear in context which definition is being used at a given time, it tends to become less clear as contexts collide, or as discussion moves from one context to another.
The same sort of ambiguity arose in the development of the function concept and it may save some effort to follow the pattern of resolution that worked itself out there.
When we speak of a function we are thinking of a mathematical [[../TrivialGroupoid/|object]] whose articulation requires three pieces of data, specifying the set the set and a particular subset of their cartesian product So far so good.
Let us write to express what has been said so far.
When it comes to parsing the notation Failed to parse (syntax error): {\displaystyle "f : X \to Y",} everyone takes the part Failed to parse (syntax error): {\displaystyle ``X \to Y"} to specify the "type of the function, that is, the pair but Failed to parse (syntax error): {\displaystyle "f"} is used equivocally to denote both the triple and the subset that forms one part of it. One way to resolve the ambiguity is to formalize a distinction between a function and its "graph , letting
Another tactic treats the whole notation Failed to parse (syntax error): {\displaystyle ``f : X \to Y"} as sufficient denotation for the triple, letting Failed to parse (syntax error): {\displaystyle ``f"} denote
In categorical and computational contexts, at least initially, the type is regarded as an essential attribute or an integral part of the function itself. In other contexts it may be desirable to use a more abstract concept of function, treating a function as a mathematical object that appears in connection with many different types.
Following the pattern of the functional case, let the notation Failed to parse (syntax error): {\displaystyle ``L \subseteq X \times Y"} bring to mind a mathematical object that is specified by three pieces of data, the set the set and a particular subset of their cartesian product As before we have two choices, either let or let Failed to parse (syntax error): {\displaystyle ``L"} denote and choose another name for the triple.
Definition
It is convenient to begin with the definition of a -place relation , where is a positive integer.
Definition. A -place relation over the nonempty sets is a -tuple where is a subset of the cartesian product
Remarks
Though usage varies as usage will, there are several bits of optional language that are frequently useful in discussing relations. The sets are called the domains of the relation with being the domain. If all of the are the same set then is more simply described as a -place relation over The set is called the graph of the relation on analogy with the graph of a function. If the sequence of sets is constant throughout a given discussion or is otherwise determinate in context, then the relation is determined by its graph making it acceptable to denote the relation by referring to its graph. Other synonyms for the adjective -place are -adic and -ary , all of which leads to the integer being called the dimension , the adicity , or the arity of the relation
Local incidence properties
A local incidence property (LIP) of a relation is a property that depends in turn on the properties of special subsets of that are known as its local flags . The local flags of a relation are defined in the following way:
Let be a -place relation
Select a relational domain and one of its elements Then Failed to parse (syntax error): {\displaystyle L_{x@j}} is a subset of that is referred to as the flag of with at or the Failed to parse (syntax error): {\displaystyle x@j} -flag of an object that has the following definition:
Failed to parse (syntax error): {\displaystyle L_{x@j} = \{ (x_1, \ldots, x_j, \ldots, x_k) \in L : x_j = x \}. }
Any property of the local flag Failed to parse (syntax error): {\displaystyle L_{x@j} \subseteq L} is said to be a local incidence property of with respect to the locus Failed to parse (syntax error): {\displaystyle x @ j.}
A -adic relation is said to be -regular at if and only if every flag of with at has the property where is taken to vary over the theme of the fixed domain
Expressed in symbols, is -regular at if and only if Failed to parse (syntax error): {\displaystyle C(L_{x@j})} is true for all in
Regional incidence properties
The definition of a local flag can be broadened from a point in to a subset of arriving at the definition of a regional flag in the following way:
Suppose that and choose a subset Then Failed to parse (syntax error): {\displaystyle L_{M@j}} is a subset of that is said to be the flag of with at or the Failed to parse (syntax error): {\displaystyle M@j} -flag of an object which has the following definition:
Failed to parse (syntax error): {\displaystyle L_{M@j} = \{ (x_1, \ldots, x_j, \ldots, x_k) \in L : x_j \in M \}. }
Numerical incidence properties
A numerical incidence property (NIP) of a relation is a local incidence property that depends on the cardinalities of its local flags.
For example, is said to be -regular at if and only if the cardinality of the local flag Failed to parse (syntax error): {\displaystyle L_{x@j}} is for all in or, to write it in symbols, if and only if Failed to parse (syntax error): {\displaystyle |L_{x@j}| = c} for all
In a similar fashion, one can define the NIPs, -regular at -regular at and so on. For ease of reference, a few of these definitions are recorded here:
Failed to parse (unknown function "\begin{matrix}"): {\displaystyle \begin{matrix}{ccccccccc} L & =is= & c=-regular= & =at= \ j & =if and only if= & |L_{x@j}| & = & c & =for all= \ x \in X_j. \\ L & =is= & (< c)=-regular= & =at= \ j & =if and only if= & |L_{x@j}| & < & c & =for all= \ x \in X_j. \\ L & =is= & (> c)=-regular= & =at= \ j & =if and only if= & |L_{x@j}| & > & c & =for all= \ x \in X_j. \\ \end{matrix} }
Species of 2-adic relations
Returning to 2-adic relations, it is useful to describe some familiar classes of objects in terms of their local and numerical incidence properties. Let be an arbitrary 2-adic relation. The following properties of can be defined:
If is tubular at then is called a partial function or a prefunction from to This is sometimes indicated by giving an alternate name, say, ``", and writing
Just by way of formalizing the definition:
If is a prefunction that happens to be total at then is called a function from to indicated by writing To say that a relation is totally tubular at is to say that it is -regular at Thus, we may formalize the following definition:
In the case of a function one has the following additional definitions:
Variations
Because the concept of a relation has been developed quite literally from the beginnings of logic and mathematics, and because it has incorporated contributions from a diversity of thinkers from many different times and intellectual climes, there is a wide variety of terminology that the reader may run across in connection with the subject.
One dimension of variation is reflected in the names that are given to -place relations, for with some writers using the Greek forms, medadic , [[../CoIntersections/|monadic]], dyadic , triadic , -adic , and other writers using the Latin forms, nullary , unary , binary , ternary , -ary .
The cardinality of the relational ground, the set of relational domains, may be referred to as the adicity , the arity , or the dimension of the relation. Accordingly, one finds a relation on a finite number of domains described as a polyadic relation or a finitary relation, but others count infinitary relations among the polyadic. If the number of domains is finite, say equal to then the relation may be described as a -adic relation, a -ary relation, or a -dimensional relation, respectively.
A more conceptual than nominal variation depends on whether one uses terms like [[../Predicate/|predicate]], relation , and even term to refer to the formal object proper or else to the allied syntactic items that are used to denote them. Compounded with this variation is still another, frequently associated with philosophical differences over the status in reality accorded formal objects. Among those who speak of numbers, functions, properties, relations, and sets as being real, that is to say, as having objective properties, there are divergences as to whether some things are more real than others, especially whether particulars or properties are equally real or else which one is derivative in relationship to the other. Historically speaking, just about every combination of modalities has been used by one school of thought or another, but it suffices here merely to indicate how the options are generated.