PlanetPhysics/Transformation Between Cartesian Coordinates and Polar Coordinates

From testwiki
Jump to navigation Jump to search

From the definition of a contravariant [[../Vectors/|vector]] (contravariant [[../Tensor/|tensor]] of rank 1)

T¯i=Tjx¯ixj

we get the transformation [[../Matrix/|matrix]] from the partial derivatives

Aij=x¯ixj

In order to calculate the transformation matrix, we need the equations relating the two coordinates [[../SimilarityAndAnalogousSystemsDynamicAdjointnessAndTopologicalEquivalence/|systems]]. For cartesian to polar, we have

r=x2+y2

θ=tan1(yx)

and for polar to cartesian

x=rcosθ

y=rsinθ

So if we designate (x,y) as the bar coordinates, then the transformation components from polar coordinates (r,θ) to cartesian coordinates (x,y) is calculated as

A11=x¯1x1=xr=cosθ

A12=x¯1x2=xθ=rsinθ

A21=x¯2x1=yr=sinθ

A22=x¯2x2=yθ=rcosθ

The components from cartesian coordinates to polar coordinates transform the same way, but now the polar coordinates have the bar

B11=x¯1x1=rx=xx2+y2

B12=x¯1x2=ry=yx2+y2

B21=x¯2x1=θx=yx2+y2

B22=x¯2x2=θy=xx2+y2

In summary, the {\mathbf components of contravariant vectors} in cartesian coordinates and polar coordinates transform between each other according to

[xy]=[cosθrsinθsinθrcosθ][rθ]

[rθ]=[xx2+y2yx2+y2yx2+y2xx2+y2][xy]

Template:CourseCat