PlanetPhysics/Wave Equation of a Free Particle
The theory of matter [[../CosmologicalConstant2/|waves]] leads unambiguously to the wave equation of a free particle (in non-relativistic approximation). Indeed, the wave is a superposition:
of monochromatic plane waves whose frequency is connected with the wave [[../Vectors/|vector]] by the [[../Bijective/|relation]] connecting [[../Momentum/|momentum]] and [[../CosmologicalConstant/|energy]] for a [[../Particle/|particle]] of [[../Mass/|mass]]
Taking the partial derivatives of the two sides of equation (1), we omit questions of convergence since mathematical rigor is of no concern to us in this argument, one obtains successively:
According to relation (2), the expressions under the integral signs of equations (2) and (5) are proportional; therefore the integrals themselves differ by the same proportionality factor. Consequently
This is the Schrödinger equation for a free particle ; it satisfies conditions (A) and (B); from the very manner in which it was obtained it also satisfies the requirements of the [[../PrincipleOfCorrespondingStates/|correspondence principle]]. Indeed the formal analogy with Clasical [[../Mechanics/|mechanics]] is actually realized: equation (6) is in a sense the quantum-mechanical translation of the classical equation (2), the energy and momentum being represented in this quantum language by differential [[../QuantumOperatorAlgebra4/|operators]] acting on the wave [[../Bijective/|function]] according to the correspondence rule
Thus the quantity is represented by the operator
Just like relation (2) from which it originated, equation (6) obviously does not satisfy the principle of relativity. On the other hand, the de Broglie theory does not suffer from this limitation. To obtain a relativistic equation of the free particle, one may try to repeat the preceding argument, replacing relation (2) by a relation between energy and momentum in conformity with the theory of relativity. The correct relation is most suitable because of the presence of the [[../PiecewiseLinear/|square]] root. To avoid that difficulty, one can use the relation
from which one deduces the equation
which may also be written
making use of the [[../DAlembertian/|D'Alembertian]] operator
One again finds the same formal correspondence between equations (8) and (9), as the one which exists between equations (2) and (6).
Equation (9), the so-called [[../KleinGordonFockEquation/|Klein-Gordon equation]], plays an important role in Relativistic [[../QuantumOperatorAlgebra5/|quantum theory]]. As it does not satisfy criterion (B), it cannot be adopted as [[../TransversalWave/|wave equation]] without a physical reinterpretation of the wave . Actually, the fact that a wave can represent the dynamical state of one and only one particle is fully justified only in the non-relativistic limit, i.e. when the law of conservation of the number of particles is satisfied.
References
[1] Messiah, Albert. "[[../QuantumParadox/|Quantum mechanics]]: [[../Volume/|volume]] I." Amsterdam, North-Holland Pub. Co.; New York, Interscience Publishers, 1961-62.
This entry is a derivative of the Public [[../Bijective/|domain]] [[../Work/|work]] [1].