Stresses in wedges

From testwiki
Jump to navigation Jump to search

Wedge with Boundary Tractions

File:Wedge with surface traction.png
Elastic wedge with normal and shear surface tractions

Suppose

  • The tractions on the boundary vary as rn.
  • No body forces.

Then

(1)φ=rn+2f(θ)

To find f(θ) plug into 4φ=0.

(2)(d2dθ2+(n+2)2)(d2dθ2+n2)f(θ)=0

If n0 and n2,

(3)φ=rn+2[a1cos{(n+2)θ}+a2cos(nθ)+a3sin{(n+2)θ}+a4sin(nθ)]

The corresponding stresses and displacements can be found from Michell's solution. We have to take special care for the case where n=0, i.e., the traction on the surface is constant.


Williams' Asymptotic Solution

Ref: M.L. Williams, ASME J. Appl. Mech., v. 19 (1952), 526-528.

File:Williams solution mode I.png
The Williams' solution
  • Stress concentration at the notch.
  • Singularity at the sharp corner, i.e, σij.
  • William's solution involves defining the origin at the corner and expanding the stress field as an asymptotic series in powers of r.
  • If the stresses (and strains) vary with rα as we approach the point r=0, the strain energy is given by
(4)U=1202π0rσijεijrdrdθ=C0rr2a+1dr

This integral is bounded only if a>1. Hence, singular stress fields are acceptable only if the exponent on the stress components exceeds 1.

Stresses near the notch corner

  • Use a separated-variable series as in equation (3).
  • Each of the terms satisfies the traction-free BCs on the surface of the notch.
  • Relax the requirement that n in equation (3) is an integer. Let n=λ1.
(5)φ=rλ+1[a1cos{(λ+1)θ}+a2cos(λ1)θ+a3sin{(λ+1)θ}+a4sin(λ1)θ]

The stresses are

σrr=rλ1[a1λ(λ+1)cos{(λ+1)θ}a2λ(λ3)cos{(λ1)θ}a3λ(λ+1)sin{(λ+1)θ}a4λ(λ3)sin{(λ1)θ}](6)σrθ=rλ1[+a1λ(λ+1)sin{(λ+1)θ}+a2λ(λ1)sin{(λ1)θ}a3λ(λ+1)cos{(λ+1)θ}a4λ(λ1)cos{(λ1)θ}](7)σθθ=rλ1[+a1λ(λ+1)cos{(λ+1)θ}+a2λ(λ+1)cos{(λ1)θ}+a3λ(λ+1)sin{(λ+1)θ}+a4λ(λ+1)sin{(λ1)θ}](8)

The BCs are σrθ=σθθ=0 at θ=α.Hence,

0=rλ1λ[+a1(λ+1)sin{(λ+1)α}+a2(λ1)sin{(λ1)α}a3(λ+1)cos{(λ+1)α}a4(λ1)cos{(λ1)α}](9)0=rλ1λ[a1(λ+1)sin{(λ+1)α}a2(λ1)sin{(λ1)α}a3(λ+1)cos{(λ+1)α}a4(λ1)cos{(λ1)α}](10)

The BCs are σrθ=σθθ=0 at θ=α.Hence,

0=rλ1λ[+a1(λ+1)cos{(λ+1)α}+a2(λ+1)cos{(λ1)α}+a3(λ+1)sin{(λ+1)α}+a4(λ+1)sin{(λ1)α}](11)0=rλ1λ[+a1(λ+1)cos{(λ+1)α}+a2(λ+1)cos{(λ1)α}a3(λ+1)sin{(λ+1)α}a4(λ+1)sin{(λ1)α}](12)

The above equations will have non-trivial solutions only for certain eigenvalues of λ, one of which is λ=0. Using the symmetries of the equations, we can partition the coefficient matrix.


Eigenvalues of λ

Adding equations (9) and (10),

(13)a3(λ+1)cos{(λ+1)α}+a4(λ1)cos{(λ1)α}=0

Subtracting equation (10) from (9),

(14)a1(λ+1)sin{(λ+1)α}+a2(λ1)sin{(λ1)α}=0

Adding equations (11) and (12),

(15)a1(λ+1)cos{(λ+1)α}+a2(λ+1)cos{(λ1)α}=0

Subtracting equation (12) from (11),

(16)a3(λ+1)sin{(λ+1)α}+a4(λ+1)sin{(λ1)α}=0

Therefore, the two independent sets of equations are

(17)[(λ+1)sin{(λ+1)α}(λ1)sin{(λ1)α}(λ+1)cos{(λ+1)α}(λ+1)cos{(λ1)α}][a1a2]=[00]

and

(18)[(λ+1)cos{(λ+1)α}(λ1)cos{(λ1)α}(λ+1)sin{(λ+1)α}(λ+1)sin{(λ1)α}][a3a4]=[00]

Equations (17) have a non-trivial solution only if

(19)λsin(2α)+sin(2λα)=0

Equations (18) have a non-trivial solution only if

(20)λsin(2α)sin(2λα)=0
  • From equation (4), acceptable singular stress fields must have λ>0.Hence, λ=0 is not acceptable.
  • The term with the smallest eigenvalue of λ dominates the solution. Hence, this eigenvalue is what we seek.
  • λ=1 leads to φ=a4sin(0). Unacceptable.
  • We can find the eiegnvalues for general wedge angles using graphical methods.


Special case : α = π = 180°

In this case, the wedge becomes a crack.In this case,

(21)λ=12,1,32,

The lowest eigenvalue is 1/2. If we use, this value in equation (17), then the two equations will not be linearly independent and we can express them as one equation with the substitutions

(22)a1=A2sin(α2);a2=3A2sin(3α2)

where A is a constant. The singular stress field at the crack tip is then

σrr=KI2πr[54cos(θ2)14cos(3θ2)](23)σθθ=KI2πr[34cos(θ2)+14cos(3θ2)](24)σrθ=KI2πr[14sin(θ2)+14sin(3θ2)](25)

where, KI is the { Mode I Stress Intensity Factor.}

(26)KI=3Aπ2

If we use equations (18) we can get the stresses due to a mode II loading.

σrr=KII2πr[54sin(θ2)+34sin(3θ2)](27)σθθ=KII2πr[34sin(θ2)34sin(3θ2)](28)σrθ=KII2πr[14cos(θ2)+34cos(3θ2)](29)

Axially Loaded Wedge

File:Wedge with axial force.png
Elastic wedge loaded by an axial force

The BCs at θ=±β are

(30)tr=tθ=0;𝐧^=±𝐞^θσrθ=σθθ=0

What about the concentrated force BC?

  • What is 𝐧^ at the vertex ?
  • The traction is infinite since the force is applied on zero area. Consider equilibrium of a portion of the wedge.

At r=a, the BCs are

(31)𝐧^=𝐞^rσrθ=tr;σθθ=tθ

For equilibrium, F1=F2=M3=0. Therefore,

P1+ββ[σrr(a,θ)cosθσrθ(a,θ)sinθ]adθ=0(32)ββ[σrr(a,θ)sinθ+σrθ(a,θ)cosθ]adθ=0(33)ββ[aσrθ(a,θ)]adθ=0(34)

These constraint conditions are equivalent to the concentrated force BC.

Solution Procedure

Assume that σrθ(r,θ)=0. This satisfies the traction BCs on θ=±β and equation (34). Therefore,

(35)σrθ=r(1rφθ)=0φ=rη(θ)+ζ(r)

Hence,

(36)σθθ=2φr=ζ'(r)

That means σθθ is independent of θ. Therefore, in order to satisfy the BCs, σθθ=0, i.e.,

(37)ζ(r)=C1r+C2φ=rη(θ)+C1r=r[η(θ)+C1]=rξ(θ)

Checking for compatibility, 4φ=0, we get

(38)ξ(IV)(θ)+2ξ'(θ)+ξ(θ)=0

The general solution is

(39)ξ(θ)=Asinθ+Bcosθ+Cθsinθ+Dθcosθ

Therefore,

(40)φ=r[Asinθ+Bcosθ+Cθsinθ+Dθcosθ]

The only non-zero stress is σrr.

(41)σrr=1r[2Ccosθ2Dsinθ]

Plugging into equation (33), we get

(42)D[2βsin(2β)]=0D=0

Hence,

(43)σrr=2Crcosθ

Plugging into equation (32), we get

(44)P=C[2β+sin(2β)]C=P2β+sin(2β)

Therefore,

(45)φ=Crθsinθ=Prθsinθ2β+sin(2β)

The stress state is

(46)σrr=2Pcosθr[2β+sin(2β)];σrθ=0;σθθ=0

Special Case : β = π/2

A concentrated point load acting on a half plane.

(47)σrr=2Pcosθπr;σrθ=0;σθθ=0

Displacements

2μur=φr+αrψθ2μuθ=1rφθ+αr2ψr

where

2ψ=0r(rψθ)=2φ

Plug in φ=Crθsinθ,

r(rψθ)=2φr(rψθ)=2Crcosθrψθ=2Clnrcosθ+A(θ)ψθ=2Clnrrcosθ+A(θ)rψ=2Clnrrsinθ+η(θ)r+ξr

Plug ψ into 2ψ=0,

1r3η'(θ)+1r3η(θ)+ξ'(r)+1rξ'(r)4Cr3sinθ=0η'(θ)+η(θ)+r3ξ'(r)+r2ξ'(r)4Csinθ=0

Hence,

η'(θ)+η(θ)4Csinθ=br3ξ'(r)+r2ξ'(r)=br3

Solving,

η(θ)=2Cθcosθ+dcosθ+esinθ+bξ'(r)=fr+br2

Therefore,

2μur=2αClnrcosθ+(2α1)Cθsinθ+α(e2C)cosθαdsinθ2μuθ=2αClnrsinθ+(2α1)Csinθ+(2α1)Cθcosθαdcosθαesinθ+αfr

To fix the rigid body motion, we set uθ=0 when θ=0, and set ur=0 when θ=0 and r=L.Then,

ur=αCμln(rL)cosθ+(2α1)C2μθsinθuθ=αCμln(rL)sinθ+(2α1)C2μθcosθC2μsinθ

The displacements are singular at r=0 and r=. At θ=0,

ur=αCμln(rL)uθ=0

Is the small strain assumption satisfied ?


The Flamant Solution

Elastic wedge loaded by two forces at the tip
  • This problem is also self-similar (no inherent length scale).
  • All quantities can be expressed in the separated-variable form σ=f(r)g(θ).
  • The stresses vary as (1/r) (the area of action of the force decreases with increasing r). How about a conical wedge ?

From Michell's solution, pick terms containing 1/r in the stresses. Then,

φ=C1rθsinθ+C2rlnrcosθ+C3rθcosθ+C4rlnrsinθ

Therefore, from Tables,

σrr=C1(2cosθr)+C2(cosθr)+C3(2sinθr)+C4(sinθr)σrθ=C2(sinθr)+C4(cosθr)σθθ=C2(cosθr)+C4(sinθr)

From traction BCs, C2=C4=0. From equilibrium,

F1+2αβ(C1cosθC3sinθa)acosθdθ=0F2+2αβ(C1cosθC3sinθa)asinθdθ=0

After algebra,

σrr=2C1cosθr+2C3sinθr;σrθ=0;σθθ=0

Special Case : α = -π, β = 0

C1=F1π;C2=F2π

The displacements are

u1=F1(κ+1)ln|x1|4πμ+F2(κ+1)sign(x1)8μu2=F2(κ+1)ln|x1|4πμF1(κ+1)sign(x1)8μ

where

κ=34νplane strainκ=3ν1+νplane stress

and

sign(x)={+1x>01x<0

Introduction to Elasticity