Trigonometry/Identities

From testwiki
Jump to navigation Jump to search

Let us take a right angled triangle with hypotenuse length 1. If we mark one of the acute angles as θ, then using the definition of the sine ratio, we have

sinθ=oppositehypotenuse


As the hypotenuse is 1,

sinθ=opposite1=opposite


Repeating the same process using the definition of the cosine ratio, we have

cosθ=adjacenthypotenuse=adjacent1=adjacent


Pythagorean identities

Since this is a right triangle, we can use the Pythagorean Theorem:

x2+y2=r2

x2r2+y2r2=r2r2

cos2θ+sin2θ=1

This is the most fundamental identity in trigonometry.

x2y2+y2y2=r2y2

cot2x+1=csc2

x2x2+y2x2=r2x2

1+tan2θ=sec2θ

From this identity, if we divide through by squared cosine, we are left with:

sin2θ+cos2θcos2θ=1cos2θ

tan2θ+1=sec2θ

sec2θtan2θ=1

If instead we divide the original identity by squared sine, we are left with:

sin2θ+cos2θsin2θ=1sin2θ

cot2θ+1=csc2θ

csc2θcot2θ=1

There are basically 3 main trigonometric identities. The proofs come directly from the definitions of these functions and the application of the Pythagorean theorem:

sin2θ+cos2θ=1
sec2θtan2θ=1
csc2θcot2θ=1


Angle sum-difference identities

sin(α±β)=sinαcosβ±cosαsinβ
cos(α±β)=cosαcosβsinαsinβ

Cofunction identities

Template:Multicol

cos(90θ)=sinθ
sec(90θ)=cscθ
tan(90θ)=cotθ

Template:Multicol-break

sin(90θ)=cosθ
csc(90θ)=secθ
cot(90θ)=tanθ

Template:Multicol-end

Multiple angle identities

cos2A=cos2Asin2A
sin2A=2sinAcosA
sin2θ=tan2θ*tanθtan2θtanθ
cos2θ=tanθtan2θtanθ
tan2θ=tanθ(1cos2θ+1)
tan2θ=2sin2θsin2θtanθ

Template:CourseCat