Trigonometry/Trigonometric Analysis
Template:Center topWelcome to the Lesson of Analytical TrigonometryTemplate:Center bottom Template:Center topPart of the School of OlympiadsTemplate:Center bottom
This topic deals with the analytical aspects of Trigonometry. Widely this topic covers Trigonometric Identities and Equations. And important part of this topic is trigonometry through Complex Numbers by the use of De Moivre's Law and its application.
| Function | Inverse function | Reciprocal | Inverse reciprocal | ||||
|---|---|---|---|---|---|---|---|
| sine | sin | arcsine | arcsin | cosecant | csc | arccosecant | arccsc |
| cosine | cos | arccosine | arccos | secant | sec | arcsecant | arcsec |
| tangent | tan | arctangent | arctan | cotangent | cot | arccotangent | arccot |
Theorems
Identities
Basic Relationships
| Pythagorean trigonometric identity | |
|---|---|
| Ratio identity |
| Function | ||||||
|---|---|---|---|---|---|---|
| Name(s) | Abbreviation(s) | Value |
|---|---|---|
| versed sine, versine | ||
| versed cosine, vercosine, coversed sine, coversine |
||
| haversed sine, haversine | ||
| haversed cosine, havercosine, hacoversed sine, hacoversine, cohaversed sine, cohaversine |
||
| exterior secant, exsecant | ||
| exterior cosecant, excosecant |
| Reflected in | Reflected in (co-function identities) |
Reflected in |
|---|---|---|
| Shift by π/2 | Shift by π Period for tan and cot |
Shift by 2π Period for sin, cos, csc and sec |
|---|---|---|
Angle Sum Identities
Complex Numbers, De Moivre's Law and Argand Plane
Examples
Resources
Textbooks
Practice Questions
<quiz display=simple points="1/1!"> { |type="{}"} { 1/2|0.5_3 }
{ |type="{}"} { 1/2|0.5_3 }
{ |type="{}"} { 1_3 } </quiz>
Related WebApps
Active participants
The histories of Wikiversity pages indicate who the active participants are. If you are an active participant in this division, you can list your name here (this can help small divisions grow and the participants communicate better; for large divisions a list of active participants is not needed).