Trigonometry/Trigonometric Analysis

From testwiki
Jump to navigation Jump to search

Template:Center topWelcome to the Lesson of Analytical TrigonometryTemplate:Center bottom Template:Center topPart of the School of OlympiadsTemplate:Center bottom

This topic deals with the analytical aspects of Trigonometry. Widely this topic covers Trigonometric Identities and Equations. And important part of this topic is trigonometry through Complex Numbers by the use of De Moivre's Law and its application.


Function Inverse function Reciprocal Inverse reciprocal
sine sin arcsine arcsin cosecant csc arccosecant arccsc
cosine cos arccosine arccos secant sec arcsecant arcsec
tangent tan arctangent arctan cotangent cot arccotangent arccot

Theorems

Identities

Basic Relationships

Pythagorean trigonometric identity sin2θ+cos2θ=1
Ratio identity tanθ=sinθcosθ


Each trigonometric function in terms of the other five.
Function (sinθ) (cosθ) (tanθ) (cscθ) (secθ) (cotθ)
sinθ= sinθ  ±1cos2θ  ±tanθ1+tan2θ  1cscθ  ±sec2θ1secθ  ±11+cot2θ 
cosθ= ±1sin2θ  cosθ  ±11+tan2θ  ±csc2θ1cscθ  1secθ  ±cotθ1+cot2θ 
tanθ= ±sinθ1sin2θ  ±1cos2θcosθ  tanθ  ±1csc2θ1  ±sec2θ1  1cotθ 
cscθ= 1sinθ  ±11cos2θ  ±1+tan2θtanθ  cscθ  ±secθsec2θ1  ±1+cot2θ 
secθ= ±11sin2θ  1cosθ  ±1+tan2θ  ±cscθcsc2θ1  secθ  ±1+cot2θcotθ 
cotθ= ±1sin2θsinθ  ±cosθ1cos2θ  1tanθ  ±csc2θ1  ±1sec2θ1  cotθ 


Historic Shorthands
Name(s) Abbreviation(s) Value
versed sine, versine versinθ 
versθ 
1cosθ 
versed cosine, vercosine,
coversed sine, coversine
vercosθ 
coversinθ 
cvsθ 
1sinθ 
haversed sine, haversine haversinθ 
havθ 
12versin θ 
haversed cosine, havercosine,
hacoversed sine, hacoversine,
cohaversed sine, cohaversine
havercosθ 
hacoversinθ 
cohavθ 
12vercosθ 
exterior secant, exsecant exsecθ  secθ1 
exterior cosecant, excosecant excscθ  cscθ1 


Symmetries
Reflected in θ=0 Reflected in θ=π/2
(co-function identities)
Reflected in θ=π
sin(θ)=sinθcos(θ)=+cosθtan(θ)=tanθcsc(θ)=cscθsec(θ)=+secθcot(θ)=cotθ sin(π2θ)=+cosθcos(π2θ)=+sinθtan(π2θ)=+cotθcsc(π2θ)=+secθsec(π2θ)=+cscθcot(π2θ)=+tanθ sin(πθ)=+sinθcos(πθ)=cosθtan(πθ)=tanθcsc(πθ)=+cscθsec(πθ)=secθcot(πθ)=cotθ


Periodicity and Shifts
Shift by π/2 Shift by π
Period for tan and cot
Shift by 2π
Period for sin, cos, csc and sec
sin(π2+θ)=+cosθcos(π2+θ)=sinθtan(π2+θ)=cotθcsc(π2+θ)=+secθsec(π2+θ)=cscθcot(π2+θ)=tanθ sin(π+θ)=sinθcos(π+θ)=cosθtan(π+θ)=+tanθcsc(π+θ)=cscθsec(π+θ)=secθcot(π+θ)=+cotθ sin(2π+θ)=+sinθcos(2π+θ)=+cosθtan(2π+θ)=+tanθcsc(2π+θ)=+cscθsec(2π+θ)=+secθcot(2π+θ)=+cotθ


Angle Sum Identities

Complex Numbers, De Moivre's Law and Argand Plane

Examples

Resources

Textbooks

Practice Questions

<quiz display=simple points="1/1!"> {  |type="{}"} sinπ6={ 1/2|0.5_3 }

{  |type="{}"} cosπ3={ 1/2|0.5_3 }

{  |type="{}"} tanπ4={ 1_3 } </quiz>

Active participants

The histories of Wikiversity pages indicate who the active participants are. If you are an active participant in this division, you can list your name here (this can help small divisions grow and the participants communicate better; for large divisions a list of active participants is not needed).