University of Florida/Egm4313/s12.team11.gooding/R3

From testwiki
Jump to navigation Jump to search

Problem 3.7


Solved By Kyle Gooding

Problem Statement


Expand the series on both sides of (1),(2) pg. 7-12b to verify these equalities.
(1)

Given

j=25Cj*j(j1)xj2=j=03Cj+2*(j+2)(j+1)xj

(2)
j=15Cj*jxj1=j=04Cj+1*(j+1)xj

Solutions

Expanding both sides of (1) results in:
j=25Cj*j(j1)xj2=C2(2)(21)x0+C3(3)(31)x1+C4(4)(41)x2+C5(5)(51)x3
j=03Cj(j+2)(j+1)xj=C0+2(0+2)(0+1)x0+C1+2(1+2)(1+1)x1+C2+2(2+2)(2+1)x2+C3+2(3+2)(3+1)x3


Simplifying:
j=25Cj*j(j1)xj2=C2(2)+C36x+C412x2+C520x3
j=03Cj(j+2)(j+1)xj=C2(2)+C36x+C412x2+C520x3

 The two sums are equal.

Expanding both sides of (2) results in:
j=15Cj*jxj1=C1(1)x0+C2(2)x1+C3(3)x2+C4(4)x3+C5(5)x4
j=04Cj+1*(j+1)xj=C0+1(0+1)x0+C1+1(1+1)x1+C1+2(2+1)x2+C2+2(3+1)x3+C3+2(4+1)x4

Simplifying:
j=15Cj*jxj1=C1(1)+C2(2)x1+C3(3)x2+C4(4)x3+C5(5)x4
j=15Cj*jxj1=C1(1)+C2(2)x1+C3(3)x2+C4(4)x3+C5(5)x4

 The two sums are equal.

Egm4313.s12.team11.gooding 23:49, 19 February 2012 (UTC)

Template:CourseCat