University of Florida/Egm4313/s12.team11.gooding/R6

From testwiki
Jump to navigation Jump to search

R6.3

Problem Statement

Page 491, #15,17. Plot the truncated Fourier series for n=2,4,8.

Solution

15.


f(x)={xπ,π<x<π/2x,π/2<x<π/2πx,π/2<x<π

Since f(x)=f(x), the function is odd.

a0=(1/π)*[1ππ/2(x+π)dx+π/2π/2(x)dx+π/2π(πx)dx]
After simplification, a0=0
. Using Equation (5) on page 490, the exapansion becomes;
f(x)=8k/π2[sin(π*x/L)sin(3π*x/L)/9...)
With L=π,k=π/2 this becomes;
f(x)=4/π(sinxsin(3x)/9+sin(5x)/25sin(6x)/36....) for n is "odd".
This means when n is even, f(x)=0

File:R63a.jpg

17.
f(x)=1|x|,1x1

f(x)={1+xπ,1<x<01x,0<x<1

a0=1/2[10(1+x)dx+01(1x)dx]
a0=1/2[11/2+11/2]

 a0=1/2

an=1/1[10(1+x)cos(nπ*x/1)dx+01(1x)cos(nπ*x/1)dx]
Simplifying results in;
an=2[1/(n2π2)(1)n/(n2π2)]
So,

an=4/(n2π2) 

when n is odd.
bn=1/1[10(1+x)sin(nπ*x/1)dx+01(1x)sin(nπ*x/1)dx]
Simplifying results in;

bn=0

f(x)=1/2+n=04/(n2π2)*cos(nπ*x)

Since an=0 for even n, f(x) becomes f(x)=1/2 for even n.

File:R63b.jpg

Template:CourseCat