University of Florida/Egm4313/s12.team11.perez.gp/R2.3

From testwiki
Jump to navigation Jump to search

Problem Statement (K 2011 p.59 pb. 3)

Find a general solution. Check your answer by substitution.

Given

y+6y+8.96y=0

Solution

We can write the above differential equation in the following form:

d2ydx2+6dydx+8.96y=0

Let ddx=λ.

The characteristic equation of the given DE is

λ2+6λ+8.96=0

Now, in order to solve for λ, we can use the quadratic formula:

λ=(6)±(6)24(1)(8.96)2(1)

λ=6±3635.842

λ=6±0.162

λ=6±0.42

Therefore, we have:

λ1=6+0.42=5.82=2.8

and

λ1=60.42=6.42=3.2

Thus, we have found that the general solution of the DE is actually:

y=c1e2.8x+c2e3.2x

Check:

To check if y is indeed the solution of the given DE, we can differentiate the

what we found to be the general solution.

dydx=y=2.8xc1e2.8x+3.2xc2e3.2x

d2ydx2=y=7.84xc1e2.8x+10.24c2e3.2x

Substituting the values of y,y and y in the given equation, we get:

7.84c1e2.8x+10.24c2e3.2x+6(2.8c1e2.8x3.2c2e3.2x)+8.96(c1e2.8x+c2e3.2x)=0

7.84c1e2.8x+10.24c2e3.2x16.8c1e2.8x19.2c2e3.2x+8.96c1e2.8x+8.96c2e3.2x=0

and thus:

00.

Therefore, the solution of the given DE is in fact:


y=c1e2.8x+c2e3.2x

Problem Statement (K 2011 p.59 pb. 4)

Find a general solution to the given ODE. Check your answer by substituting into the original equation.

Given

y'+4y+(π2+4)y=0

Solution

The characteristic equation of this ODE is therefore:

λ2+aλ+b=λ2+4λ+(π2+4)=0

Evaluating the discriminant:


a24b=424(π2+4)=4π2<0


Therefore the equation has two complex conjugate roots and a general homogenous solution of the form:



y=eax/2(Acos(ωx)+Bsin(ωx))


Where: ω=b14a2=π2+414(4)2=π2=π

And finally we find the general homogenous solution:


                                                  y=e2x(Acos(πx)+Bsin(πx))


Check:

We found that:


y=e2x(Acos(πx)+Bsin(πx))

Differentiating y to obtain y' and y' respectively:

y'=2e2x(Acos(πx)+Bsin(πx))+e2x(πAcos(πx)πBsin(πx))

                                   y'=2e2x(Acos(πx)+Bsin(πx))+πe2x(Acos(πx)Bsin(πx))


y'=4e2x(Acos(πx)+Bsin(πx))2πe2x(Acos(πx)Bsin(πx))2πe2x(Acos(πx)Bsin(πx))π2e2x(Acos(πx)+Bsin(πx))


                 y'=4e2x(Acos(πx)+Bsin(πx))4πe2x(Acos(πx)Bsin(πx))π2e2x(Acos(πx)+Bsin(πx))


Substituting these equations into the original ODE yields:

4e2x(Acos(πx)+Bsin(πx))4πe2x(Acos(πx)Bsin(πx))π2e2x(Acos(πx)+Bsin(πx))

+4(2e2x(Acos(πx)+Bsin(πx))+πe2x(Acos(πx)Bsin(πx)))+(π2+4)(e2x(Acos(πx)+Bsin(πx)))=0

4e2x(Acos(πx)+Bsin(πx))4πe2x(Acos(πx)Bsin(πx))π2e2x(Acos(πx)+Bsin(πx))

8e2x(Acos(πx)+Bsin(πx))+4πe2x(Acos(πx)Bsin(πx))+π2e2x(Acos(πx)+Bsin(πx))+4e2x(Acos(πx)+Bsin(πx))=0

(48+4)e2x(Acos(πx)+Bsin(πx))+(4+4)πe2x(Acos(πx)Bsin(πx))+(π2π2)e2x(Acos(πx)+Bsin(πx))=0

00

Therefore, the solution is correct.

Template:CourseCat