University of Florida/Egm4313/s12.team5.R4

From testwiki
Jump to navigation Jump to search

Template:Big3

R4.1

Question

For the series shown in the notes on p. 7-20

 j=0n2[cj+2(j+2)(j+1)+acj+1(j+1)+bcj]xj+acnnxn1+b[cn1xn1+cnxn]=j=0ndjxj 

Obtain the equations for the coefficients of  x,  x2,  xn2  ,  xn1  ,  xn

Then, set up the coefficient matrix A for the general case with the coefficients obtained.

Solution

For j=0:

2c2+ac1+bc0=d0  (1)

For j=1:

6c3+2ac2+bc1=d1  (2)

For j=2:

12c4+3ac3+bc2=d2 (3)

For j=n-2:

[cn(n)(n1)+acn1(n1)+bcn2]=dn2 (4)

For j=n-1:

acnn+bcn1=dn1 (5)

For j=n:

bcn=dn (6)

Setting up the A matrix using equations (1)-(6):

A=[ba2b2abba(n1)n(n1)banb]

Author

Solved and uploaded by Joshua House

Proofread by David Herrick

R 4.2

Question

Consider the L2-ODE-CC(5) p.7b-7 with sin x as excitation:

 y3y+2y=r(x) 

 r(x)=sinx 

and with the initial conditions  y(0)=1,y(0)=0 

Part 1

Use the Taylor series for  sinx  in (1)p6-4 to reproduce the figure on p7-24

Part 2

Let  yp(x)  be the particular soln corresponding to the excitating  rn(x)  :  y'p+ay'p+byp=rn(x) 

Let  rn(x)  be the truncated Taylor series of sin x :

n=0(1)k(t)2k+1(2k+1)!=tt33!+...+(1)n(t)2n+1(2n+1)!=:rn(x) 

Let  yn(x)  be the overall soln for the L2-ODE-CC corresponding to (2)-(3) p.7-26 :

 y'n+ay'n+byn=rn(x) 

with the same initial conditions (3b)p.3-7.

Find the  yn(x)  for n = 3, 5, 9; plot these solns for x in the interval [0,4π].

Part 3

Use the particular soln in K 2011 p.82 Table 2.1 to find the exact overall soln y(x) and plot it in the above figure to compare with  yn(x)  for n = 3, 5, 9.

Solution

Part 1

File:Partone.jpg

Part 2

To solve the non-homogeneous ODE we have to solve the homogeneous ODE and find any solution of  yp(x) . Using the method of undetermined coefficients, specifically the basic rule, where r(x) is in one of the functions in the first column in Table 2.1 K 2011 p. 82 and choose the  yp(x)  in the same line and determine its undetermined coefficients by substituting  yp  and its derivatives.

For an excitation  rn(x) 

n = 3

 r3(x)=t(t3)/3! 

n = 5

 r5(x)=t(t3)/3!+(t5)/5! 

n = 9

 r9(x)=t(t3)/3!+(t5)/5!(t7)/7!+(t9)/9! 


The term in  r(x)  that will be used will be  kxn(n=3,5,9) 

For n = 3

 K3x3+K2x2+K1x+K0 

For n = 5

 K5x5+K4x4+K3x3+K2x2+K1x+K0 

For n = 9

 K9x9+K8x8+K7x7+K6x6+K5x5+K4x4+K3x3+K2x2+K1x+K0 


The homogeneous solution for y will be in the form of

 yh(x)=C1e2x+C2ex 

Plugging  yp,yp,yp  into the original equation will give the following:

For n = 3

 (6K3x+2K2)3(3K3x2+2K2x+K1)+2(K3x3+K2x2+K1x+K0)=x(x3)/6! 

For n = 5

 (20K5x3+12K4x2+6K3x+4K2x)3(5K5x4+4K4x3+3K3x2+2K2x+K1)+2(K5x5+K4x4+K3x3+K2x2+K1x+K0) 

 =x(x3)/3!+(x5)/5! 

For n = 9

 (72K9x7+56K8x6+42K7x5+30K6x4+20K5x3+12K4x2+6K3x+4K2x)3(9K9x8+8K8x7+7K7x6+6K6x5+5K5x4+4K4x3 

 +3K3x2+2K2x+K1+2(K9x9+K8x8+K7x7+K6x6+K5x5+K4x4+K3x3+K2x2+K1x+K0)=x(x3)/3!+(x5)/5!(x7)/7!+(x9)/9! 


Equating the coefficients of  xn  on both sides

For n = 3

 x3:2K3=1/6 

 K3=1/12 

 x2:9K3+2K2=0 

 K2=3/8 

 x:6K36K2+2K1=1 

 K1=3/8 

 c:2K23K1+2K0=0 

 K0=3/16 

Now plugging in the particular and homogeneous equation  y=yh+yp  and solving for the initial conditions.

 y=C1e2x+C2ex(1/12)x3(3/8)x2(3/8)x3/16   y(0)=C1+C23/16=1   y(0)=2C1+C23/8=0 

This gives constant values of  C1=13/16   C2=2 

For n = 3 Final solution is:

 y3=(13/16)e2x+2ex(1/12)x3(3/8)x2(3/8)x3/16 


For n = 5

Equating the coefficients

 x5:2K5=1/120 

 K5=1/240 

 x4:15K5+2K4=0 

 K4=1/32 

 x3:20K512K4+2K3=1/6 

 K3=11/24 

 x2:12K49K3+2K2=0 

 K2=9/4 

 x:6K36K2+2K1=1 

 K1=39/8 

 c:4k23K1+2K0=0 

 K0=45/16 

Now plugging in the particular and homogeneous equation  y=yh+yp  and solving for the initial conditions.

 y=C1e2x+C2ex+(1/240)x5+(1/32)x4(11/24)x3(9/4)x2(39/8)x45/16 

 y(0)=C1+C245/16=1 

 y(0)=2C1+C239/8=0 

This gives constant values of  C1=79/48   C2=13/6 

For n = 5 the final solution is

 y5=(79/48)e2x+(13/6)ex+(1/240)x5+(1/32)x4(11/24)x3(9/4)x2(39/8)x45/16 


For n = 9

Equating the coefficients

 x9:2K9=1/9! 

 K9=1.3778e6 

 x8:27K9+2K8=0 

 k8=1.86e5 

 x7:72K924K8+2K7=1/7! 

 K7=2.728e4 

 x6:56K821K7+2K6=0 

 K6=0.0023 

 x5:42K718K6+2K5=1/5! 

 K5=0.0111 

 x4:30K615K5+2K4=0 

 K4=0.0488 

 x3:20K512K4+2K3=1/3! 

 K3=0.0976) 

 x2:12K49K3+2K2=0 

 K2=0.1463 

 x:6K36K2+2K1=1 

 K1=0.6461 

 c:4K23K1+2K0=0 

 K0=0.6765 

Now plugging in the particular and homogeneous equation  y=yh+yp  and solving for the initial conditions.

 y=C1e2x+C2ex+yp 

 y(0)=C1+C2+0.6765=1 

 y(0)=2C1+C2+0.6461=0 

This gives constant values of

 C1=0.3226 

 C2=0.6449 

For n = 9 the final solution is

 y9=0.3226e2x+0.6449ex+1.37e6x9+1.86e5x8+2.72e4x7+0.0023x6+0.0111x5+0.0488x40.0976x3 

 0.1463x20.6461x0.6765 

File:Parttwo.jpg

Part 3

The table 2.1 from K 2011 p.82 illustrates that for the method of undetermined coefficients for an r(x) term in the form of:

r(x) = k sin(ωx)

Then the choice for  yp(x)  would be:

K cos(ωx) + M sin(ωx)

The homogeneous solution for y will be in the form of

 yh(x)=y(x)=C1e2x+C2ex 

with roots of 2 and 1 derived from  y3y+2y=0 

Plugging in the derivatives for the particular solution into the original equation gives:

 yp3yp+2yp=sin(x) 

where

      yp=Acos(x)+Bsin(x) 
      yp=Asin(x)+Bcos(x) 
      yp=Acos(x)Bsin(x) 
      Acos(x)Bsin(x)3(Asin(x)+Bcos(x))+2(Acos(x)+Bsin(x))=sin(x) 
      (A3B)cos(x)+(3A+B)sin(x)=sin(x) 
      3A+B=1;A3B=0; 
      A=3/10;B=1/10 

Combining the particular and homogeneous solution of y gives the following:

 y=yh+yp=C1e2x+C2ex+(3/10)cos(x)+(1/10)sin(x) 

Solving for the initial conditions where  y(0)=1,andy(0)=0 

 y(0)=C1+C2=7/10 

 y(0)=2C1+C2+1/10 

 2C1+7/10C1=1/10 

 C1=8/10;C2=1/10 

This gives the final solution:

 y=(8/10)e2x(1/10)ex+(3/10)cos(x)+(1/10)sin(x) 

File:Ptthree.jpg

From the figure it is barely discernible between this figure and the figure above it in part two. The final solution for y in part three is very similar if not approximately identical to the lower curve in the figure in part two.

Author

This problem was solved and uploaded by Michael Wallace

R 4.3

Question

Consider the L2-ODE-CC:

 y3y+2y=r(x) 

Where  r(x)=log(1+x) 

with initial conditions  y(34)=1,y(34)=0 

Part 1

Develop  log(1+x)  in Taylor series about x(hat) = 0 to reproduce the figure in the notes on p. 7-25.

Part 2

Let  rn(x)  be the truncated Taylor series with n terms -- which is also the highest degree of the Taylor (power) series -- of  log(1+x) .

Find  yn(x)  for n = 4, 7, and 11 such that:

 yn+ayn+byn=rn(x) 

Plot  yn(x)  for n = 4,7,11 for x in  [34,3] 

Part 3

Use the matlab command ODE45 to integrate numerically the same function with the same initial conditions to obtain  y(x)  . Then plot  y(x)  in the same figure with  yn(x) 

Solution

Part 1

The formula to develop the Taylor Series about x(hat) = 0 is given by:

 f(0)+f(0)(x0)11!+f(0)(x0)22!+f(0)(x0)33!+...n=0fn(0)(x0)nn! 

Using the function  log(1+x)  we get:

 f(x)=1(x+1),f(x)=1(x+1)2,f(x)=2(x+1)3,... 

Plugging in 0, the first few terms become:

 0+xx22+x33 

The pattern of this expression can be represented by the Taylor series:

n=0(1)n(x)n+1(n+1)

Part 2

First, the homogenous solution to the differential equation is given by:

 (λ1)(λ2)=0 

Therefore,  yh=C1ex+C2e2x 

for  rn(x)  is given by the truncated Taylor series of 4 terms:

 r4(x)=xx22+x33x44 

Therefore,  yp4=c0+c1x+c2x2+c3x3+c4x4 

 yp4=c1+2c2x+3c3x2+4c4x3,yp4=2c2+6c3x+12c4x2 

For this solution, with n = 4, the coefficient matrix is set up like:

 A=[ba(n3)(n3)(n2)ba(n2)(n1)(n2)ba(n1)n(n1)banb] 

Therefore, the matrix solution with n = 4, a = -3, and b = 2 is:

 A=[23226629122122][c0c1c2c3c4]=[01121314] 

Solving by back substitution we get:

 yp4=6516338x178x2712x318x4 

 y4(x)=C1ex+C2e2x6516338x178x2712x318x4 

Plugging in the initial conditions we get:

 y4(x)=8.90ex5.587e2x6516338x178x2712x318x4 

for  rn(x)  is given by the truncated Taylor series of 7 terms:

 r7(x)=xx22+x33x44+x55x66+x77 

Therefore:  yp7=c0+c1x+c2x2+c3x3+c4x4+c5x5+c6x6+c7x7 

 yp7=c1+2c2x+3c3x2+4c4x3+5c5x4+6c6x5+7c7x6 

 yp7=2c2+6c3x+12c4x2+20c5x3+30c6x4+42c7x5 

For this solution, with n = 7, the coefficient matrix is set up like:

 A=[ba(n6)(n6)(n5)ba(n5)(n5)(n4)ba(n4)(n4)(n3)ba(n3)(n3)(n2)ba(n2)(n2)(n1)ba(n1)(n1)(n)banb] 

Therefore, the matrix solution with n = 7, a = -3, and b = 2 is:

 A=[23226629122122021530218422212][c0c1c2c3c4c5c6c7]=[01121314151617] 

Solving by back substitution we get:

 yp7=4931780+2457340x+1220140x2+120512x3+1958x4+235x5+23x6+114x7 

Since the homogeneous solution remains the same:

 y7(x)=C1ex+C2e2x+4931780+2457340x+1220140x2+120512x3+1958x4+235x5+23x6+114x7 

Plugging in the initial conditions we get:

 y7(x)=613.504ex3.868e2x+4931780+2457340x+1220140x2+120512x3+1958x4+235x5+23x6+114x7 

The image below demonstrates the general matrix for n=11 and the matrix with values filled in: File:EML HW4 matricies1.png

for  rn(x)  is given by the truncated Taylor series of 11 terms:

 r11(x)=xx22+x33x44+x55x66+x77x88+x99x1010+x1111 

Therefore,  yp11=c0+c1x+c2x2+c3x3+c4x4+c5x5+c6x6+c7x7+c8x8+c9x9+c10x10+c11x11

Solving by back substitution we get:

 yp11=3301079.406+3300338.812x+1649428.813x2+549316.042x3+137082.188x4+27317.725x5+4520.042x6

 +636.321x7+77.188x8+8.056x9+0.7x10+0.0455x11

Since the homogeneous solution remains the same:

 y11(x)=C1ex+C2e2x+3301079.406+3300338.812x+1649428.813x2+549316.042x3+137082.188x4+27317.725x5+4520.042x6

 +636.321x7+77.188x8+8.056x9+0.7x10+0.0455x11 

Plugging in the initial conditions we get:

 y11(x)=3391815.1ex+734.909e2x+3301079.406+3300338.812x+1649428.813x2+549316.042x3+137082.188x4+27317.725x5 
 +4520.042x6+636.321x7+77.188x8+8.056x9+0.7x10+0.0455x11 

File:R4.3.png

Part 3

Matlab Code:

function yp = F(t,y)

yp = zeros(2,1);

yp(1) = y(2);

yp(2) = log(t+1) + 3*y(2)-2*y(1);

end

[t,y] = ode45('F',[-.75,3],[1,0]);

plot(x,y4,'g',x,y7,'r',x,y11,'y',t,y(:,1),'b')

axis([-0.75 3 -4 2])

File:Part3.png

Author

Part 2 n=7 and n =11 were solved and uploaded by Cameron North.

Part 1 and Part 2 n = 4 was solved and uploaded by David Herrick

R 4.4

Question

Part 1

Find n sufficiently high so that yn(x1),y'n(x1) do not differ from the numerical solution by more than 105 at x1=0.9

Part 2

Develop log(1+x) in Taylor series about x^=1. Plot the results.

Part 3

Find yn(x) for n=4,7,11, such that yn+ayn+byn=rn(x) for x in [0.9,3] with the initial conditions found in Part 1. Plot the results.

Part 4

Use the matlab command 'ode45' to integrate numerically (5) p.7b-7 with (1) p.7-28 and the initial conditions yn(x1),y'n(x1) to obtain the numerical solution for y(x).
Plot y(x) in the same figure with yn(x)

Solution

Part 1

With MATLAB, a program was used to iteratively add terms into the taylor series of log(1+x). Until the error between the exact answer and the series was less than 105., more terms were added.

File:IEA 4 4 1a.jpg

File:IEA 4 4 1asolution.jpg

n=39 for the error to be of a magnitude of 105. The error found: 9.7422e-005


With a very similar process for y'n(x1).

File:IEA 4 4 1b.jpg

File:IEA 4 4 1bsolution.jpg

n=74 for the error to be of a magnitude of 105. The error found: 9.3967e-005

Part 2

The formula to develop the Taylor Series about x^=1 is given by:

 f(1)+f(1)(x1)11!+f(1)(x1)22!+f(1)(x1)33!+...n=0fn(1)(x1)nn! 

Using the function  log(1+x)  for n=11 we get:

 f(x)=1(x+1),f(x)=1(x+1)2,f(x)=2(x+1)3,fIV(x)=6(x+1)4, 
 fV(x)=24(x+1)5,fVI(x)=120(x+1)6,fVII(x)=720(x+1)7,fVIII(x)=5040(x+1)8, 
 f'X(x)=40320(x+1)9,fX(x)=362880(x+1)10,fXI(x)=3628800(x+1)11 

Plugging in x=1 up to n=4, and using the formula for developing the Taylor Series, we get yn4 :

 yn4=log(2)+(x1)2(x1)28+(x1)324(x1)464 ,

Then we do the same for n=7 terms to get yn7 :

 yn7=log(2)+(x1)2(x1)28+(x1)324(x1)464+(x1)5160(x1)6384+(x1)7896 

And finally for yn11:

 yn11=log(2)+(x1)2(x1)28+(x1)324(x1)464+(x1)5160(x1)6384+(x1)7896(x1)82048+(x1)94608(x1)1010240 +(x1)1122528

Plotting the functions:
Matlab code:

x=-3:0.2:6;
y = log(1+x);
y4 = log(2) + (x-1)/2 - (x-1).^2/8 + (x-1).^3/24 - (x-1).^4/64;
y7 = log(2) + (x-1)/2 - (x-1).^2/8 + (x-1).^3/24 - (x-1).^4/64 + (x-1).^5/160 - (x-1).^6/384 + (x-1).^7/896;
y11 = log(2) + (x-1)/2 - (x-1).^2/8 + (x-1).^3/24 - (x-1).^4/64 + (x-1).^5/160 - (x-1).^6/384 + (x-1).^7/896 - (x-1).^8/2048 + (x-1).^9/4608 - (x-1).^(10)/10240 + (x-1).^(11)/22528;
plot(x,y, x,y4, x,y7, x,y11)
hleg1 = legend('log(1+x)','n=4','n=7','n=11');

Graph:


Convergence is in the domain [-1.5,4].

Part3

For n=4 rx is:

 rx=log(2)+(x1)2(x1)28+(x1)324(x1)464  

 yp4=c0+c1(x1)c2(x1)2+c3(x1)3c4(x1)4 
 yn4=c12c2(x1)+3c3(x1)24c4(x1)3 
 yn4=2c2+6c3(x1)12c4(x1)2 ,

Plugging the equations into the above ODE will give matrices like the following:

[200001220001292000662000232]*[c4c3c2c1c0]=[164ln(10)124ln(10)18ln(10)12ln(10)log(2)]

The unknown vector c can be solved by forward substitution, with MATLAB to do the calculations:

c4=.0034,c3=.0113,c2=.0577,c1=.1624,c0=.1624

Particular and general solution yp4 , y4:

yp4=0.16240.1624*(x1).0577*(x1)2.0113*(x1)3.0034*(x1)4

y4(x)=yh(x)+yp4(x)

y4(x)=C1ex+C2e2x+0.16240.1624*(x1) .0577*(x1)2.0113*(x1)3.0034*(x1)4

Then with the Initial Conditions,

y4(x)=.0595ex.0076e2x+0.16240.1624*(x1)
.0577*(x1)2.0113*(x1)3.0034*(x1)4

For n=7 rx is:

 rx=log(2)+(x1)2(x1)28+(x1)324(x1)464+(x1)5160(x1)6384+(x1)7896 

 yp7=c0+c1(x1)c2(x1)2+c3(x1)3c4(x1)4+c5(x1)5c6(x1)6+c7(x1)7 

 yp7=c12c2(x1)+3c3(x1)24c4(x1)3+5c5(x1)46c6(x1)5+7c7(x1)6 

 yp7=2c2+6c3(x1)12c4(x1)2+20c5(x1)330c6(x1)4+42c7(x1)5 

The same process used when solving when n=4 is used to construct a matrix equation for n=7:

[200000002120000004218200000030152000000201220000001292000000662000000232]*[c7c6c5c4c3c2c1c0]=[1896ln(10)1384ln(10)1160ln(10)164ln(10)124ln(10)18ln(10)12ln(10)log(2)]

Using MATLAB to solve for the unknown vector c:

c7=.0002,c6=.0020,c5=.0141,c4=.0725,c3=.3034,c2=.9029,c1=1.9072,c0=2.1084

Particular and general solutions yp7 , y7:

yp7=2.1084+1.9072*(x1)+.9029*(x1)2+.3034*(x1)3+.0725*(x1)4+.0141*(x1)5+.0020*(x1)6+.0002*(x1)7

y7(x)=yh(x)+yp7(x)

y7(x)=C1ex+C2e2x+2.1084+1.9072*(x1)+.9029*(x1)2+.3034*(x1)3+.0725*(x1)4+.0141*(x1)5

+.0020*(x1)6+.0002*(x1)7

With the initial conditions:

y7(x)=.7271ex+.0233e2x+2.1084+1.9072*(x1)+.9029*(x1)2+.3034*(x1)3+.0725*(x1)4+.0141*(x1)5!
+.0020*(x1)6+.0002*(x1)7

For n=11 rx is:

 rx=log(2)+(x1)2(x1)28+(x1)324(x1)464+(x1)5160(x1)6384+(x1)7896(x1)82048+(x1)94608(x1)1010240 +(x1)1122528 

 yp11=c0+c1(x1)c2(x1)2+c3(x1)3c4(x1)4+c5(x1)5c6(x1)6+c7(x1)7(x1)8+(x1)9(x1)10+(x1)11   yp11=c12c2(x1)+3c3(x1)24c4(x1)3+5c5(x1)46c6(x1)5+7c7(x1)6 

 8c8(x1)7+9c9(x1)810c10(x1)9+11c11(x1)10   yp11=2c2+6c3(x1)12c4(x1)2+20c5(x1)330c6(x1)4+42c7(x1)556c8(x1)6 

 +72c9(x1)790c10(x1)8+110c11(x1)9 

Creating another matrix system and solving for the unknown vector c:

c11=0,c10=.0002,c9=.0019,c8=.0181,c7=.15,c6=1.0675,c5=6.4597,

c4=32.4318,c3=130.0033,c2=390.3968,c1=781.289,c0=781.6873

Particular and general solutions yp11 , y11(x):

yp11=781.6873+781.289*(x1)+390.3968*(x1)2+130.0033*(x1)3+32.4318*(x1)4+

6.4597*(x1)5+1.0675*(x1)6+.15*(x1)7+.0181*(x1)8+.0019*(x1)9+.0002*(x1)10

y11(x)=yh(x)+yp11(x)

y11(x)=C1ex+C2e2x+781.6873+781.289*(x1)

+390.3968*(x1)2+130.0033*(x1)3+32.4318*(x1)4

6.4597*(x1)5+1.0675*(x1)6+.15*(x1)7+.0181*(x1)8+.0019*(x1)9+.0002*(x1)10

With initial conditions:

y11(x)=287.5907ex+.05e2x+781.6873+781.289*(x1)+390.3968*(x1)2+130.0033*(x1)3+32.4318*(x1)4
6.4597*(x1)5+1.0675*(x1)6+.15*(x1)7+.0181*(x1)8+.0019*(x1)9+.0002*(x1)10

plot:


Part 4

The initial condition equation is:

y3y+2y=ln(1+x)

The initial conditions are:

y(0)=39,y(0)=74

To solve the problem, we first convert the 2nd order differential equation into two 1st order differential equations. The initial 2nd order then turns into these two equations:

y1=y,y2=y

Taking the derivatives, we find that:

y'1=y2,y'2=2y13y2+ln(1+x)

with the new initial conditions as:

y1(t0)=1,y2(t0)=0,t0=34

Now, we create a MATLAB function, "F", that will return a vector-valued function. We do this with the following function:

function yp=F(x,y)
yp=zeros(2,1);
yp(1)=y(2);
yp(2)=-2*y(1)-3*y(2)+log(1+x);

We now incorporate the function into a simple MATLAB program which will calculate the results:

EDU>> [x,y]=ode45('F',[0,5],[39,74]);
EDU>> plot(y(:,1),y(:,2))

This generates the following graph of yn(x):



Now we solve the initial value problem by hand to find y(x):

y3y+2y=ln(1+x)

First, convert to the characteristic equation:

λ23λ+2=0
λ1=2,λ2=1
yh(x)=C1ex+C2e2x

The excitation factor of ln(1+x) does not yield any useful value for yp(x) since the integral is nonelementary. Therefore, the final solution for y(x) with what is know is simply:

y(x)=C1ex+C2e2x,y(x)=C1ex+2C2e2x y(0)=39,C1+C2=39
y(0)=74,C1+2C2=74
C1=4,C2=35
y(x)=4ex+35e2x

Graphing both solutions on the same graph yields the following:

MATLAB code: EDU>> z = 4*exp(x) + 25*exp(2*x)
plot(y(:,1),y(:,2),y(:,1),z)
File:Graph2.jpg

Author

Contribution Summary

Problem 1 was solved and uploaded by Joshua House 15:34, 13 March 2012 (UTC)

Problem 2 was solved by Mike Wallace

Problem 3 part 2 was solved by John North and parts 1 and 3 were solved by David Herrick

Problem 4 part 1 and part of part3 were solved and uploaded by Derik Bell, parts 2 and 3 were solved by Radina Dikova, and part 4 was solved by William Knapper