University of Florida/Egm6321/F10.TEAM1.WILKS/Mtg13

From testwiki
Jump to navigation Jump to search

EGM6321 - Principles of Engineering Analysis 1, Fall 2009

Mtg 13: Tues, 22Sept09


Euler integrating factor method Eq.(1) P.12-3

(xmyn)[xy+2xy+3y]=0

Template:Font



Where: (xwyn)=h(x,y) 

HW: Find (m,n) such that Eq(1) is exact.

Result: A first integration is:

ϕ (x,y,p)=xp+(2x321)y+k1=k2

Template:Font



Where p=y  and k1  and k2  are constants

HW: Solve Eq(2) for y(x)  HINT: L1_ODE_VC (integrating factor)

A class of exact L2_ODE_VC (how to invent more exact L2_ODE_VC)

HW: Find mathematical structure of ϕ   that yields the above class

F=dϕ dx=ϕ x(x,y,p)+ϕ yp+ϕ pp=P(x)y+Q(x)y+R(x)y 

Where p=y  and p=y 

and P(x)=ϕ p  and Q(x)=ϕ y  and R(x)y=ϕ x 

Answer:

ϕ (x,y,p)=P(x)p+T(x)y+k

Template:Font



Eq.(2) P.13-1  : P(x)=x  and T(x)=2x321  and k=k1 

Exact Nn_ODE's, where N means nonlinear and n means nth order

F(x,y(0)...y(n)=0

Template:Font



Where y(0)=y  and y(1)=y  and y(n)=dnydxn 


Condition 1 for exactness:

F=dϕ dx(x,y(0),...,yn1)=ϕ x+ϕ y(0)y(1)+...+ϕ y(n1)y(n)

Template:Font



Where ϕ x+ϕ y(0)y(1)+...+ϕ y(n1)y(n)  is related term by term to x,y(0),...,yn1 

Condition 2 of exactness: fi:=Fy(i) , where i=1,...,n 

f0df1dx+d2f2dx2...+(1)ndnfndxn=0

Template:Font



HW: Case n=1  (N1_ODE)

F(x,y,y)=0=ddxϕ (x,y) 

f0df1dx=0ϕ xy=ϕ yx 

HINT: f1=ϕ y 


Case n=2  (N2_ODE)

f(x,y,y,y)=0=dϕ dx(x,y,y) 

f0df1dx+d2f2dx2=0 

References


Template:CourseCat