University of Florida/Egm6321/F10.TEAM1.WILKS/Mtg15

From testwiki
Jump to navigation Jump to search

EGM6321 - Principles of Engineering Analysis 1, Fall 2009

Mtg 15: Thur, 24Sept09


Ex.1 P.14-4  :

File:EGM6321 F10 TEAM1 WILKS xc mtg15 1.svg

NJ(x)=  finite element basis function associated with node J = "hat" function.

File:EGM6321 F10 TEAM1 WILKS xc mtg15 2.svg

NJC0  , but NJC1 

Ex.1 P.14-4 : Cubic Spline (Bexler, cubic Hermitian)

File:EGM6321 F10 TEAM1 WILKS xc mtg15 3.svg

Cubic    4 Coefficients    4 degrees of freedom per element    2 degrees of freedom per node (each element has 2 nodes)

File:EGM6321 F10 TEAM1 WILKS xc mtg15 4.svg

HW: NJα (x)C1 , but NJα C2 , for α =1,2 


File:EGM6321 F10 TEAM1 WILKS xc mtg15 5.svg

L2(yHα )=0  , α =1,2 

L2(yP)=f(x) 

y=AyH1+ByH2+yP  , where A and B are constants

Where this can be rewritten for x as: x=AxH1+BxH2+xP  , where A and B are constants

L2(y)=fy=L2(f) 


Euler Equations: Special Homogeneous Ln_ODE_VC

anxny(n))+an1xn1yn1+...+a1xy+a0y=0i=0naixiy(i)=0 

Where y=y(1)  and y=y(0) 

Two methods of solution:

Method 1: Transfer of variables x=et 

Method 2: Method of undetermined coefficients y=xr 

(Or Trial Solution) K.etal(2003)

References


Template:CourseCat