University of Florida/Egm6321/F10.TEAM1.WILKS/Mtg17

From testwiki
Jump to navigation Jump to search

EGM6321 - Principles of Engineering Analysis 1, Fall 2009

Mtg 17: Thur, 10Oct09


Linearity    superposition y=yH+yP 

Homogeneous Solution yH 
- Euler Equations
- Trial solution (undefined coefficient)
- Reduction of order method 2: Undetermined factor

Homogeneous L2_ODE_VC: cf. Eq.(1) P.3-1

y+a1(x)y+a0y=0

Template:Font



Where a0(x)  can be substituted for a1(x)  or a0y  in Eq(1)

Given one homogeneous solution u1(x)  known

Find second homogeneous solution u2(x)  such that

yH(x)=k1u1(x)+k2u2(x)

Template:Font



Wherek1,k2  are constants

Assume full homogeneous solution

y(x)=U(x)u1(x)

Template:Font



WhereU(x)  is an unknown to be determined

Whereu1(x)  is known

"Full" = includes u2(x) 

Add the following: a0(x)[y=Uu1] 

and a1(x)[y=Uu1+Uu1]

and [y=Uu1+2Uu1+Uu1]

To get a0y+a1y+y=U[a0u1+a1u1+u1]+U[a1u1+2u1]+Uu1=0  by Eq(1) p17-1

Reduce to u1+a1u1+a0u1=0 

Since u1  is a homogeneous solution  0=U(a1u1+2u1)+Uu1 , NOTE missing dependent variable U in front of U  term

Let Z:=U   homogeneous L1_ODE_VC for Z

 u1(x)Z+(a1(x)u1(x)+2u1(x)Z=0

Template:Font



Solve for Z,
- integration factorial method (HW)
- Direct integration (because Eq(1) is homogeneous)

 ZZ+(a1+2u1u1)=0 

Where a1,2u1u1  are known

Integrate log|Z|+2log|u1|+xa1(s)ds=k, where k is a constant

Z(x)=c(u1)2exa1(s)ds=U(x)

Template:Font

where c=ek 

 U(x)=xc(u1(t))2eta1(s)dsdt+c~ 

where a¯ 1(t)=ta1(s)ds 

Homogeneous solution

y(x)=U(x)u1(x)=cu1x1(u1(t))2ea¯ 1(t)dt+c~u1=c~u1+cu2

Template:Font



where c~=k1  and c=k2 

u2=u1x1(u1(t))2ea¯ 1(t)dt

Template:Font



HW: obtain Eq.(2) P.17-3 Z(x)  using the integrating factor method

References


Template:CourseCat