University of Florida/Egm6321/F10.TEAM1.WILKS/Mtg19

From testwiki
Jump to navigation Jump to search

EGM6321 - Principles of Engineering Analysis 1, Fall 2009

Mtg 19: Tues, 5Oct09


HW: Legendre differential Eq.(1) P.14-2 with n=0 , such that homogeneous solution u1(x)=1 .

Use reduction of order method 2 (undetermined factor) to find u2(x) , second homgenous solution

HW: K. p28, pb. 1.1.b.

Variation of parameters (continued) P.18-4

Use expression for y  Eq.(2) P.18-4 and y  Eq.(3) P.18-4 in non-homogeneous L2_ODE_VC Eq.(1) P.3-1

c1(u1+a1u1+a0u1)+c2(u2+a1u2+a0u2)+c1u1+c2u2=f

Template:Font


Where u1+a1u1+a0u10  , because u1  is a homogeneous solution

Where u2+a1u2+a0u20  , because u2  is a homogeneous solution

2 equations Eq.(1) P.18-4 and Eq.(1) P.19-1 for two unknowns {c1c2} 

In matrix form: [u1u2u1u2]{c1c2}={0f} 

Where [u1u2u1u2]  is the Wronskian matrix designated as W_ 

The Wronskian, W, is the determinant of W_ 

W=detW_ 

If W 0 , then W_1  exists and {c1c2}=W_1{0f} 

Theorem: u1,u2  (function of x) are linearly independant if W_ 0  , where 0=  zero function.

W_1=1W[u2u2u1u1]

Template:Font



{c1c2}=W_1{0f}=1W{u2fu1f}

Template:Font



Where {u2fu1f}  are known

c1(x)=xu2(s)f(s)Wsds+A

Template:Font



Where xu2(s)f(s)Wsds=d1(x) 

c2(x)=xu1(s)f(s)Wsds+B

Template:Font



Where xu1(s)f(s)Wsds=d2(x) 

References


Template:CourseCat