University of Florida/Egm6321/F10.TEAM1.WILKS/Mtg33

From testwiki
Jump to navigation Jump to search

EGM6321 - Principles of Engineering Analysis 1, Fall 2009

Mtg 33: Thurs, 5Nov09


F:={P0,P1,P2,...}

Template:Font



f,Pm=θ =π 2π 2f(θ )Pm(sinθ )dθ 

Template:Font



Where: sinθ =μ   and dθ   becomes dμ  

Similarly for Pn,Pm

Orthogonality of Legendre polynomial

Pn,Pm=11Pn(x)Pm(x)dx=22n+1δ mn

Template:Font



Where δ mn=  kronecker delta

δ mn={0mn1m=n

Template:Font



f,Pm=11f(μ )Pm(μ )dμ 

Template:Font


Orthogonality of {Pn}=:F

Template:Font



 Γ _(F)  is diagonal with diagonal coefficient:

Pn,Pm=22n+1

Template:Font



 An=1Pn,Pmf,Pn

Template:Font


F is complete, i.e. any continuous function, f, can be expressed as an infinite series of function in F:

f(μ )=u=0AnPn(μ )

Template:Font



Eq(4) is an equality due to the completeness of F

p29-5: f(θ )=T0cos4θ =T0(1μ 2)2u=0AnPn(μ ) 

Where μ =sin|theta  

An=2n+1211T0(1μ 2)2Pn(μ )dμ 

Template:Font



Where n=0,1,2...n

HW: f=igi 

Show that if {gi}  is odd, then f is odd

Show that if {gi}  is even, then f is even

HW: Show that P2k  is even for k=0,1,2... and P2k+1  is odd

Eq.(5) P.33-2 An=f,PnPn,Pn , f even

 An=0  for n=2k+1 , since P2k+1(x)  is odd

A1=A3=A5=...=0 

It turns out that An=0  for all n5  due to linear independance of F={Pn}  and the orthogonality of F 

Linear independance of F 

Pn(x)  is a polynomial of order n

PnP n  set of all polynomials of degree (order)  n 

qP n q(x)=i=0naiPi(x)

Template:Font



HW: qP 4 

q(x)=i=04cixi 

Given c0=3,c1=10,c2=15,c3=1,c4=5 

Find {ai}  such that q(x)=i=04aiPi 

Plot q=icixi=iaiPi 

Where icixi=  figure 1 and iaiPi=  figure 2

Othogonality of F={Pk}  Eq.(3) P.33-1

PmP n m n+1

Template:Font

References


Template:CourseCat