University of Florida/Egm6321/F10.TEAM1.WILKS/Mtg35

From testwiki
Jump to navigation Jump to search

EGM6321 - Principles of Engineering Analysis 1, Fall 2009

Mtg 35: Thurs, 12Nov09


Gauss Legendre quadrature (numerical integration}

Quadrature; QUAD-->quadrilateral-->Greek: measuring areas

File:EGM6321 F10 TEAM1 WILKS xc mtg35 1.svg

Area = Quadrilaterals

Cubature; CUBE; Volume = cubes

I(f):=11f(x)dx 

In(f):=j=1nwjf(xj)dx  with {xj}  the roots for Pn(x)=0  , where n is the degree of Pn(x)  and wj  being the weight

1<x1<x2<...<xn<1 

I(f)=In(f)+En(f)

Template:Font



wj=2(n+1)Pn(xj)Pn+1(xj)

Template:Font

where j=1,2,...,n

En(f)=22n+1(n!)4(2n+1)[(2n)!]2f(2n)(η )(2n)!

Template:Font

for η [1,+1] 

Ex: n=2  (2 point interpolation)

Eq.(3) P.31-3 P2(x)=12(3x21) 

 x1,2=± 13 

Eq.(4) P.31-3 P2(x)=3x,P3(x)=12(5x33x) 

W1=2(2+1)(3)(13)12[5(13)33(13)]=1 

W2=1 

HW: verify table for Gauss Legendre quadrature in wikipedia, analytical expression of {xj}  and {wj},j=1,...,n  and n=1,...,5  (n=integration points) after verifying the expression for Pn(x)  with n=1,...,6 ; (see HW p31-3 )

Evaluate numerically {xj}  and {wj}  and compute results with Abram & Stegum (see lecture plan)

Question: How does Gauss Legendre quadrature compare to other quadrature methods, e.g. trapezoidal rule?

Answer: Look at En(f) , Eq.(3) P.35-2. Consider fP 2n1 ...

References


Template:CourseCat