University of Florida/Egm6321/F10.TEAM1.WILKS/Mtg37

From testwiki
Jump to navigation Jump to search

Template:Big3

Mtg 37: Thurs, 17Nov09


P.36-4 continued

Pn(x) 

P1(x)=x 

Qn(x) 

From P.18-1 :

Q1(x)=12xlog(1+x1x)1=xtanh1x1

Template:Font



HW show Q1(x)=12xlog(1+x1x)1=xtanh1x1 

ref K p33 for Q2,Q3... 

Qn(x)=Pn(x)tanh1x2j=1,3,5J2n2j+1(2nj+1)jPnj(x)

Template:Font



Q0(x)=tanh1(x)   is odd

HW: Use Eq(2) to show when Qn  is even or odd, depending on "n"

HW: Plot {P0,P1,...,P4}  and {Q0,Q1,...,Q4} 

Legendre function Ln(x)=Pn(x)  or Qn(x)  solution of Legendre solution

Ln,Lm=0

Template:Font

for nm 

for Ln=Pn,Ln,Ln=Pn,Pn=22n+1 

for Ln,Ln=Pn,Qn = HW

Ln,Lm=Pn,Pm = Eq.(3) P.33-1

Ln,Lm=Pn,Qm =0 for nm 

Proof: Legendre equation, Eq.(1) P.14-2 : 2) [(1x2)y]+n(n+1)y=0 

Where

[(1x2)y]=(1x2)y2xy

Template:Font



 [(1x2)Ln]+n(n+1)Ln=0 

Multiply by Lm  and integrate from -1 to +1:

11Lm[(1x2)Ln]dx+n(n+1)11LmLndx=0 

Where Lm[(1x2)Ln]=α  


Integrate α   by parts:

11(1x2)LnLmdx+(n)(n+1)Ln,Lm=0

Template:Font



Interchange n and m:

11(1x2)LmLndx+(m)(m+1)Lm,Ln=0

Template:Font



Eq(1)-Eq(2):

[n(n+1)m(m+1)]Ln,Lm=0

Where [n(n+1)m(m+1)]0 since nm 

 Ln,Lm=0  when nm 

cf.K.p41

References


Template:CourseCat