University of Florida/Egm6321/F10.TEAM1.WILKS/Mtg39

From testwiki
Jump to navigation Jump to search

EGM6321 - Principles of Engineering Analysis 1, Fall 2009

Mtg 39: Thurs, 19Nov09


Note: Other Application: Quantum Mechanics

discrete variables <-- coding theory

Ref: Nikiforov, et.al (1991)

Probability (Queing theory, birth and death)

Generating functions:
-Legendre Polynomial Pn : Eq.(5) P.38-3
- (rk) = "r choose k" :

(1+x)r=k=0(rk)xk  for |x|1 

A(μ ,ρ ):=12μ ρ +ρ 2) 

From Eq.(6) P.38-3 and Eq.(7) P.38-3 : 1A(μ ,ρ )=α 0+α 1(2μ ρ ρ 2)+α 2(2μ ρ ρ 2)2+...=α 0+(2μ α 1)ρ +(α 1+4μ 2α 2)ρ 2+... 

Where (2μ ρ ρ 2)=4μ 2ρ 24μ ρ 3+ρ 4 

and α 0=P0(μ ) 

and 2μ α 1=P1(μ ) 

and (α 1+4μ 2α 2)=P+2(μ ) 

P0(μ )=α 0=1

Template:Font



P1(μ )=2μ α 1=μ 

Template:Font



P2(μ )=12(3μ 21)

Template:Font



HW: Continue the power series development to find P3,P4,P5  and complete result to that obatined by Eq.(6) P.31-3 or Eq.(7) P.31-3

2 recurrence formulas

Plan: Find ddμ 1A  and ddρ 1A 

1) ddρ 1A=12A32dAdμ =ρ A32 

Recall Eq.(5) P.38-3, now ddμ 1A=ρ A32= 

n=1Pn(μ )ρ n

Template:Font



Where P0(μ )=1 P0=0  and Pn(μ )=ddμ Pn(μ ) 

2) ddρ 1A=ρ +μ A32=n=0Pn(μ )nρ n1

Template:Font



Compare Eq(4) and Eq(5)

μ ρ =ρ 

Template:Font



ρ (μ ρ )A32=(μ ρ )n=1Pn(μ )ρ n=ρ n=0Pn(μ )nρ n1=ρ n=1Pnμ nρ n1

Where n=1 in summation due to factor u being introduced

 μ n=1Pnρ n=1Pnρ n1=n=1Pnμ ρ  

 μ P1ρ P11ρ +n=2[Pn1+μ PnnPn]ρ n=0 

 Pn1+μ PnnPn=0 

 μ PnPn1=nPn

Template:Font


References


Template:CourseCat