University of Florida/Egm6321/F10.TEAM1.WILKS/Mtg5

From testwiki
Jump to navigation Jump to search

EGM6321 - Principles of Engineering Analysis 1, Fall 2009

Mtg 5: Thur, 03 Sept 09


Note: Eq.(2)p.4-2 and Eq.(4)p.4-2

y(x)=p(x) 

Integrate from a to x:

s=as=xy(s)ds=s=as=xp(s)ds

[y(s)]s=as=x=y(x)y(a), where y(a)=constant ,

y(x)=s=as=xp(s)ds+y(a)=xp(s)ds=p(x)dx+k
another way: y(x)=p(x)dx+k

Where p(x)dx=F(x) and k=constant 

 y(a)=F(a)+k 

 k=y(a)F(a) 

 y(x)=F(x)F(a)+y(a) 

But F(x)F(a)=s=as=xp(s)ds 

 y(x)=s=as=xp(s)ds+y(a)=xp(s)ds=p(x)dx+k

Template:Font



Eq.(3)p.4-2 : Why this form of nonlinear 1st order ODE?

Most general form:

F(x,y,y)=0

Template:Font


Application:

x2y5+6(y)2=0

Template:Font



Where x2y5+6(y)2  is defined as F(x,y,y) 

HW: Show that F(x,y,y)=0  in Eq(3) is a nonlinear 1st order ODE.

Hint: Define the differential operator D(.)  associated with Eq(3).


Form for exact nonlinear 1st order ODE:

F(x,y,y)=0  is exact if   a function ϕ (x,y) such that

F=dϕ dx=ddxϕ (x,y(x))=ϕ x(x,y)+ϕ y(x,y)dydx=0

Template:Font



where:

  is defined as "there exists"

ϕ x=M(x,y)

ϕ y=N(x,y)

Multiply Eq1) thru by dx  to get:


Eq.(3)p.4-2  : M(x,y)dx+N(x,y)dy=0 


NOTE: If F(X,y,y)=0  does not have the form:

M(x,y)dx+N(x,y)dy=0

Template:Font


Then F(.)  cannot be exact.


Application: Eq.(3)p.5-2 is not exact because of the nonlinear term (y)2 


Exactness test (continued)


p5-3 Eq(1):

M(x,y)=ϕ x(x,y) 


N(x,y)=ϕ y(x,y) 


Since ϕ xy=ϕ yx 


and ϕ xy=2ϕ xy 


and ϕ yx=2ϕ yx 


and 2ϕ xy=(ϕ x)y 


and 2ϕ yx=(ϕ y)x 

My=Nx

Template:Font


Application: Eq.(1)p.4-3 Not Exact


M(x,y)=2x2+y My=12y 


N(x,y)=x5y3 Nx=5x4y3 


My Nx 

References


Template:CourseCat