University of Florida/Egm6321/f09.Team2/HW3

From testwiki
Jump to navigation Jump to search

Do Not Us This Page.

Go to User:Egm6321.f09.Team2/HW3 for latest information



Homework Assignment #3 - due Wednesday, 10/7, 21:00 UTC

Problem 1

Find (m,n) such that eqn. 1 on (p.13-1) is exact. A first integral is Φ(x,y,p)=xp+(2x321)y+k1=k2 where k1,k2 are constants.


Problem Statement: Given a L2_ODE_VC xy+2xy+3y=0

Find (m,n) from the integrating factor (xm,yn) that makes the equation exact.

A first integral is ϕ(x,y,p)=xp+(2x3/2)y+k1=k2


ϕp=x
ϕx=p+3x1/2
ϕy=2x3/21

ϕ(x,y,p)=h(x,y)+f(x,y,p)dp,f=ϕp

ϕ(x,y,p)=h(x,y)+xdp=h(x,y)+xp

g(x,y,p)=ϕx+ϕyp=hx+ϕx+(hy+ϕy)p

g(x,y,p)=p+3x1/2+(2x3/21)p=hx+x+(hy+0)p

hy=2x3/2
hx=3x1/2x

yn=hylnyn=ln(2x3/2)

n=ln(2x3/2)

xm=hxlnxm=ln(3x1/2x)

m=ln(3x1/2x)

Problem 2

Solve eqn. 2 on (p.13-1) for y(x).


Problem Statement: Given a first integralϕ of a L2_ODE_VC, solve for y(x).

ϕ(x,y,p)=xp+(2x321)y+k1=k2 (1)

where k1 and k2 are const, and p=y


Eq. (1) is in the form M(x,y)+N(x,y)y where

M(x,y)=(2x321)y

N(x,y)=x

so it satisfies the 1st condition of exactness.

Check if My=Nx for the 2ndcondition of exactness

My=2x321

Nx=1

MyNx so we do not satisfy the 2nd condition of exactness.

We must apply the integrating factor method for a L1_ODE_VC.

xp+(2x321)y=k2k1, divide by x to obtain the form:

y+a0(x)y=b(x) where:

ao(x)=1x(2x321)=2x1x

b(x)=k2k1x

From our solution of a general non-homogeneous L1_ODE_VC p.8-1

h(x)=expxa0(s)ds

h(x)=expx2x1x=exp(43x32ln|x|)(k2k1x)=exp43x32x

From p.8-2 Eq. (4)

y(x)=1h(x)xh(s)b(s)ds

Use the product rule of integration ab=abab

y(x)=1h(x)[h(x)xb(x)xh(x)xb(x)]

In our example xh(x)=h(x) so,

y(x)=1h(x)[h(x)xb(x)h(x)xb(x)]

y(x)=0

Problem 3

From (p.13-1), find the mathematical structure of Φ that yields the above class of ODE.


F(x,y,y,y)=dϕdx=ϕx(x,y,p)+ϕy(x,y,p)p+ϕp(x,y,p)p where p=y

ϕ=h(x,y)+ϕpdp=h(x,y)+ϕpp

ϕx=hx+ϕpxp

ϕy=hy+ϕpyp

g=ϕx+ϕyp=hx+ϕpxp+(hy+ϕpyp)p

hy=ϕyϕpx

Take the integral of hy

h(x,y)=(ϕyϕpx)y+k1

Substitute back into the equation for ϕ

ϕ=(ϕyϕpx)y+k1+ϕpp

Rearrange the terms to obtain

ϕ(x,y,p)=ϕpp+(ϕyϕpx)y+k where,

P(x)=ϕp
T(x)=(ϕyϕpx)y
k=k1

ϕ(x,y,p)=P(x)p+T(x)y+k

Problem 4

From (p.13-3), for the case n=1 (N1_ODE) F(x,y,y)=0=dΦdx(x,y). Show that f0df1dx=0Φxy=Φyx. Hint: Use f1=Φy.
Specifically:
4.1) Find f0 in terms of Φ
4.2) Find f1 in terms of Φ(f1=Φy)
4.3) Show that f0df1dx=0Φxy=Φyx.


Problem Statement: Given a N1_ODE, for the case n=1 F(x,y,y)=0dϕdx(x,y)

Show that f0df1dfx=0ϕxy=ϕyx, Hint:f1=ϕy


F=dϕdx(x,y(0),....y(n1)=ϕx+ϕy6(0)y(1)

F=ϕx+ϕyy

fi:=Fyi

4.1

Find f0 in terms of ϕ.

f0=Fy=(ϕx+ϕyy)y=ϕxy

f0=ϕxy

4.2

Find f1 in terms of ϕy

f1=Fy=(ϕx+ϕyy)y=ϕy

f1=ϕy

4.3

Show that f0df1dfx=0ϕxy=ϕyx,

ϕxydϕydfx=ϕxyϕyx=0

ϕxy=ϕyx

Problem 5

From (p.13-3), for the case n=2 (N2_ODE) show:
5.1) Show f1=df2dx+Φy
5.2) Show ddx(Φy)=f0
5.3) f0df1dx+d2f2dx2=0
5.4) Relate eqn. 5 to eqs. 4&5 from p.10-2.

Problem 6

From (p.14-2), for the Legendre differential equation F=(1x2)y2xy+n(n+1)y=0,
6.1 Verify exactness of this equation using two methods:
6.1a.) (p.10-3), Equations 4&5.
6.1b.) (p.14-1), Equation 5.
6.2 If it is not exact, see whether it can be made exact using the integrating factor with h(x,y)=xmyn.

Problem 7

From (p.14-3), Show that equations 1 and 2, namely
7.1 u,v functions of x, L(u+v)=L(u)+L(v). and
7.2 λ,L(λu)=λL(u) functions of x.
are equivalent to equation 3 on p.3-3.

Problem 8

From (p.15-2), plot the shape function Nj+12(x).

Media:Graph1.pdf

Problem 9

Problem Statement: From (p.16-2), show that
yxxx=e3t(yttt3ytt+2yt)
yxxxx=e4t(ytttt6yttt+11ytt6yt)


yxxx=(d/dx)[d/dx(d/dx)y]=(dt/dx)(d/dt)(dt/dx)(d/dt)(dt/dx)(d/dt)y

Replace (dt/dx) with et and (d/dt)y with yt.

yxxx=(et)(d/dt)(et)(d/dt)((et)yt) 'Chain Rule'

yxxx=(et)(d/dt)(et)(et(yt)+et(ttt))

yxxx=(et)(d/dt)(e2t(yt)+e2t(ytt))

yxxx=(et)(2e2t(yt)e2t(ytt)2e2t(ytt)+e2t(yttt))

yttt=2e3t(yt)e3t(ytt)2e3t(ytt)+e3t9yttt)

Factor out e3t and re-arrange terms in ordre of derivative,

yxxx=(e3t)(yttt3ytt+2yt)


yxxxx=(d/dx)(d/dx)(d/dx)(d/dx)y

yxxxx=(dt/dx)(d/dt)[(dt/dx)(d/dt)]((dt/dx)(d/dt))(dt/dx)(d/dt)y

Replace (dt/dx) with et and (d/dt)y with yt.

yxxxx=(et)(d/dt)(et)(d/dt)(et)(d/dt)((et)yt)

yxxxx=(et)(d/dt)(et)(d/dt)(et)(et(yt)+et(ytt))

yxxxx=(et)(d/dt)(et)(d/dt)(e2t(yt)+e2t(ytt))

yxxxx=(et)(d/dt)(et)(2e2t(yt)+e2t(ytt)2e2t(ytt)+e2t(yttt))

yxxxx=(et)(d/dt)(2e3t(yt)+e3t(ytt)2e3t(ytt)+e3t(yttt))

yxxxx=(et)(6e3t(yt)2e3t(ytt)3e3t(ytt)+e3t(yttt)+6e3t(ytt)2e3t(yttt)3e3t(yttt)+e3t(ytttt))

yxxxx=6e4t(yt)+2e4t(ytt)+3e4t(ytt)e4t(yttt)+6e4t(ytt)2e4t(yttt)3e4t(yttt)+e4t(ytttt))

Factor out e4t and re-arrange terms in order of derivative.

yxxxx=(e4t)(ytttt6yttt+11ytt6yt)

Problem 10

Problem Statement: From (p.16-4 ) Solve equation 1 on p.16-1, x2y2xy+2y=0 using the method of trial solution y=erx directly for the boundary conditions {y(1)=3y(2)=4
Compare the solution with equation 10 on p.16-3. Use matlab to plot the solutions.


Problem 11

Problem Statement: From (p.17-4 ) obtain equation 2 from p.17-3 Z(x)=cu12exp(xa1(s)ds) using the integrator factor method.


Problem 12

Problem Statement: From (p.18-1 ), develop reduction of order method using the following algebraic options

y(x)=U(x)±u1(x)

y(x)=U(x)u1(x)

y(x)=u1(x)U(x)


Problem 13

Problem Statement: From (p.18-1 ), Find u1(x) and u2(x) of equation 1 on p.18-1 using 2 trial solutions:

y=axb

y=erx

Compare the two solutions using boundary conditions y(0)=1 and y(1)=2 and compare to the solution by reduction of order method 2. Plot the solutions in Matlab.


Contributing Team Members

Joe Gaddone 16:46, 3 October 2009 (UTC)

Matthew Walker

Egm6321.f09.Team2.sungsik 21:22, 4 November 2009 (UTC)