Template:Font
page12-1
Let fnL(t) be Lagrange interpolation of order n to f(t). ⇒ fnL(.) ∈ Pn⏟set of poly of degree ⩽ n
n=1 f1L(.) interpolation exactly
P1(x)→straight lines (linear functions) i.e., e1(P1,t) ≡ 0 ∀ t
n=2 f2L(.) interpolation exactly parabolas (polynomial of order⏟degree) 2
n=3 cubic polynomial
⋮
n fnL(.) interpolation exatcly polynomial of degree n⏟actually degree ⩽ n⏞∈Pn
i.e., en(pn;t) =0 ∀t
page12-2
Template:FontTemplate:Font Template:Font Template:Font
IF f = p∈ Pn ⇒ f(n+1) ≡ 0
(2) p.11−3 ⇒ en(p,t)=0 ∀t
i.e., fnL(.) interpolation exactly p∈Pn
Method to comp. {wi,n; i=0,..,n} given {xi; i=0,..,n} not_ necessarily equidistant.
j=0_ consider f=pj=p0∈P0 constant
en(p0⏟;t=1) =f(t)⏟1−fn(t)L=1−fnL(t)=0
⇒fnL(t)⏟∑i=0nli,n(t)f(xi)⏟1=1 ⇒ ∫ab(∑i=0nli,n(t).1⏟fnL(t))dt = ∫ab1dt⏟b−a
page12-3
⇒ (∫abli,n(t)dt)⏟wi,n.1=b−a
⇒
j=1_ let f=pj=p1∈P1
choose f(x)=p1(x)= x∈P1
en(p1⏟=x;t) = f(t)⏟t−fnL(t)=t−fn(t)=0
⇒fnL(t)⏟∑i=0nli,n(t)f(xi)⏟xi=t ⇒ ∫ab(∑i=0nli,n(t).xi)⏟dtfnL(t)=∫abtdt⏟(b2−a2)/2
Template:CourseCat