University of Florida/Egm6321/f09.team1.gzc/Mtg34

From testwiki
Jump to navigation Jump to search

Template:Font

page34-1

Template:Font Find angle of attack and thrust to reach a given altitude inTemplate:Font

Template:Font Bryson & Denham 1962

Template:Font: min altitude to reach target with a bunt maneuver (inverted loop)

page34-2

V = velocity of P (airplane = pt)

T = thrust // airplace axis

α =  (V, T) = angle of attack

γ =  (x, colorblueV) = angle between honz x axis and veloctity

D = axial aero force // T

(parall. airplane axis)

page34-3

L = Tramsv. aero. force  T

W = mg = airplane weight.

Equation of motion (EOM)

colorblueControl input: T(t) , α(t)time dependent

state var,: x(t), y(t) v(t), r(t)

{ D=L2 Cd ρ V2 Sreft L=L2 Cl ρ V2 Sreft

Cd=drg coefficient | ρ=air density

Cl=lift coefficient | §ref=ref. area of airplane

page34-4

Cd=A1α2+A2α+A3 (1)

(A1, A2, A3)=curve fitting coefficient

Cl=B1α+B2 (2)

(B1, B2)=curve fitting coefficient

ρ=C1h2+C2h+C3 (3)

(C1, C2, C3)=curve fitting coefficient

Template:Font S & Z 2007

Kinematics:_ dxdt=Vx=Vcosr (4)

                       dydt=Vy=Vsinr (5)

Kinematics:_Euler equations: ddtP_=iF_i (6)

page34-5

Template:Font

(xa)2cos2t+(yb)2sin2t=1 ellipse

<dl=[dx2+dy2]1/2/math><math>Eccentricity: e=(1b2a2)1/2

C=dl=at=02π[1e2cos2t]1/2dt

=41α=0π2[1e2sin2α]12dα=4aE(e)

Template:CourseCat