University of Florida/Egm6321/f09.team1.gzc/Mtg6

From testwiki
Jump to navigation Jump to search

Template:Font

page6-1

Proof of Taylor series continued

Since

x0xf1(t)dt=[f0(t)]t=x0t=x

(1)


(e)p.53

Int. by parts (1)

(2){ x0x1u'f(1)(t)vdt=[uv]x0xuv' =[tf(1)t]t=x0t=xx0xtf(2)dtα =xf1(x)x0f(1)(x)0)α +xf(1)(x0)xf(1)(x0) =[xf(1)(x)xf(1)(x0)]x0xxf(2)(t)dt=:β+(xx0)f(1)(x0)α

page6-2

Combine [ + β - α] into a single int. use (2) p.6-1 in (2) p.5-3:

f(x)=f(x0)+(xx0)11!f(1)(x0)+x0x(xt)f(2)(t)dtβα

(1)

HW*2.1: 1) Do integration by parts on last term (integration) of (1) to reveal 3 more terms in Taylor series, i.e. ,

xx022!f(2)(x0)+xx033!f(3)(x0)+xx044!f(4)(x0)

Template:Font

Template:FontTemplate:Font

Template:Font AssumeTemplate:FontTemplate:Font correct , do intergration by parts once more


page6-3


to verifyTemplate:Font Template:Font for (n+1) eTemplate:Fontwith R(n+2)(x)

4) UseTemplate:Font onTemplate:Font Template:Fontto showTemplate:FontTemplate:Font

Template:Fontabw(x)g(x)dx=(1)g(ξ)abw(x)dx

ξ[a,b]

Template:Font






Template:Fontf(x)=sinx,x[0,π] Constrast Taylor Series of f(.) around

{ x0=π4 S10 x0=3π4 S11 for n = 0,1,2,...,10


Plot these series (for each n) Find (estimate) max |Rn+1(x=3π4)|

(5)p.33|Rn+1(x=3π4)|xx0n+1(n+1)!(α)


page6-4

α=max|f(n+1)(t)|

t[x0,x]1(f(x)=sinx)


Template:FontTemplate:Font


page6-5

File:Mtg6.pg5.fig1.svg

Template:CourseCat