University of Florida/Egm6341/s10.team2.niki/HW1

From testwiki
Jump to navigation Jump to search

Problem 1

Given

𝑭(𝒙)=𝐞𝐱𝟏𝐱

Find

Determine the limit of the given function 𝑭(𝒙) and plot it in the interval [0,1]

Solution

Problem 9

Problem Statement

Pg. 7-1

[𝐞𝐱𝟏]𝒙=1x[𝒆𝒙1]=𝒇(𝒙)

1) Expand expx in Taylor Series w/ remainder:

𝑹(𝒙)=(x0)n+1(n+1)!𝒆𝒙𝒑[ζ(x)]

2) Find Taylor Series Expansion and Remainder of f(x). eq. 4 of p 6-3.--Egm6341.s10.team2.niki 02:26, 26 January 2010 (UTC)

Solution

Given:

𝑷𝒏(𝒙)=𝒇(𝒙0)+(xx0)1!𝒇(1)(𝒙0)+...+(xx0)nn!𝒇(𝒏)(𝒙0)

[equation 4 p 2-2]

𝑹(𝒙)=(x0)n+1(n+1)!𝒆𝒙𝒑[ζ(x)]

[equation 1 p 2-3]

Part 1

𝑷𝒏(𝒙)=𝒆𝒙0+(xx0)1!𝒆𝒙0+...+(xx0)nn!𝒆𝒙0

for the case that x0=0, we get,

𝑷𝒏(𝒙)=1+(x)1!+...+(x)nn!

𝑷𝒏(𝒙) =𝒋=0xjj!

Using equation 1 p 2-3, we get the remainder as

𝑹𝒏+1(𝒙)=(xx0)n+1(n+1)!𝒇(𝒏+1)(ζ(𝒙))

for x0=0, we get

𝑹𝒏+1(𝒙)=(x)n+1(n+1)!𝒇(𝒏+1)(ζ(𝒙))

finally, 𝒇(𝒙)=𝒆𝒙=𝒋=1xjj!+(x)n+1(n+1)!𝒇(𝒏+1)(ζ(𝒙))

Part 2

𝒇(𝒙)=1x[𝒆𝒙1]

𝒆𝒙=𝒋=0xjj!=1+x1!+x22!+...+xnn!

[𝒆𝒙1]=x1!+x22!+...+xnn!

dividing both sides by x we get,

[ex1]x=𝒇(𝒙)=𝒋=1xj1j!

and remainder becomes

𝑹𝒏+1(𝒙)=(x)n(n+1)!𝒇(𝒏+1)(ζ(𝒙))

since x0=0, we have

𝑹𝒏+1(𝒙)=(x)n(n+1)!𝒇(𝒏+1)(ζ(𝒙) where ζ(x))ϵ[0,x]

Finally,

𝒇(𝒙)=[ex1]x=𝒋=1xj1j!+(x)n(n+1)!𝒇(𝒏+1)(ζ(𝒙))

problem 4

Problem Statement

Pg 5-1.

Prove the Integral Mean Value Theorem (IMVT) p. 2-3 for w(.) non-negative. i.e  w0

Solution

We have the IMVT as

𝒂𝒃𝒇(𝒙)π’˜(𝒙)𝒅𝒙=𝒇(ξ)π’‚π’ƒπ’˜(𝒙)𝒅𝒙


For a given function 𝒇(𝒙) Let m be the minimum of the function and M be the maximum of the same function

Then we know that, π’Žπ’‡(𝒙)𝑴

multiplying the inequality throughout by π’˜(𝒙)0 and integrating between [𝒂,𝒃] we get

π’‚π’ƒπ’Ž.π’˜(𝒙)𝒅𝒙=𝒂𝒃𝒇(𝒙).π’˜(𝒙)𝒅𝒙=𝒂𝒃𝑴.π’˜(𝒙)𝒅𝒙

π’Žπ’‚π’ƒπ’˜(𝒙)𝒅𝒙=𝒂𝒃𝒇(𝒙).π’˜(𝒙)𝒅𝒙=π‘΄π’‚π’ƒπ’˜(𝒙)𝒅𝒙

writing π’‚π’ƒπ’˜(𝒙)=𝑰, we get

π’Žπ‘°π’‚π’ƒπ’‡(𝒙)π’˜(𝒙)𝒅𝒙𝑴𝑰

It is seen that when w(x) = 0, the result is valid. Consider the case when w(x) > 0

dividing throughout by 𝑰

π’Ž1I𝒂𝒃𝒇(𝒙)π’˜(𝒙)𝒅𝒙𝑴

From the Intermediate Value Theorem, we know that there exists ξϵ[𝒂,𝒃] such that

𝒇(ξ)=1I𝒂𝒃𝒇(𝒙)π’˜(𝒙)𝒅𝒙

i.e

𝒇(ξ)π’‚π’ƒπ’˜(𝒙)𝒅𝒙=𝒂𝒃𝒇(𝒙)π’˜(𝒙)𝒅𝒙

Hence Proved --Egm6341.s10.team2.niki 02:28, 27 January 2010 (UTC)