University of Florida/Egm6341/s10.team3.aks/HW2

From testwiki
Jump to navigation Jump to search

(4) Derive the composite trapazoidal rule and composite simpson's rule from simple trapazoidal and simple simpson's rule

Ref Lecture notes p.9-3

Problem Statement

Show Simple Trapazoidal rulep.7-1 Composite Trapazoidal rule p.7-1

and

Show Simple Simpson's rule p.7-2 Composite Simpson's rulep.7-2

Solution

Composite Trapezoidal rule

From Simple trapezoidal rule we have ,


I1=h2[fo+f1]

=h[12fo+12f1]

similarly we have

I2=h[12f1+12f2]

I3=h[12f2+12f3] . . . . In-1=h[12fn-2+12fn-1]

In=h[12fn-1+12fn]

Summation of all of above expression gives

In=h[12fo+(12f1+12f1)+(12f2+12f2)+.....+(12fn-1+12fn-1)+12fn]

=h[12fo+f1+f2+.......+fn-1+12fn]

Hence Proved..

Composite Simpson's Rule

From Simple Simpson's rule we obtain ,

I2=h3[fo+4f1+f2]

where h=ba2

Similarly

I4=h3[f2+4f3+f4]

I6=h3[f4+4f5+f6] . . . . In-2=h3[fn-4+4fn-3+fn-2]

In=h3[fn-2+4fn-1+fn]

After Summation of above terms we obtain

In=h3[fo+4f1+(f2+f2)+4f3+(f4+f4)+4f5+f6.......+(fn-2+fn-2)+4fn-1+fn]


In=h3[fo+4f1+2f2+4f3+2f4+4f5+f6.......+2fn-2+4fn-1+fn]

where n = 2k and k = 1,2,3,4.....

Hence Proved

(14) Prove

e(3)(t)=t3[F(3)(t)F(3)(t)]

Ref Lecture p.15-2

Problem Statement

Prove that

e(3)(t)=t3[F(3)(t)F(3)(t)]

where

e(t)=ttf(x(t))dtt3[F(t)+4F(0)+F(t)]


Solution

e(t)=ttf(x(t))dtt3[F(t)+4F(0)+F(t)]

e(t)=tkf(x(t))dt+ktf(x(t))dtt3[F(t)+4F(0)+F(t)]

e(1)(t)=(F(t)+F(t))t3[F1(t)+F1(t)]13[F(t)+4F(0)+F(t)]

e(2)(t)=(F1(t)+F1(t))t3[F2(t)+F2(t)]13[F1(t)+F1(t)]13[F1(t)+F1(t)]

e(2)(t)=(F1(t)+F1(t))t3[F2(t)+F2(t)]23[F1(t)+F1(t)]

e(3)(t)=(F2(t)+F2(t))t3[F3(t)+F3(t)]13[F2(t)+F2(t)]23[F2(t)+F2(t)] e(3)(t)=(F2(t)+F2(t))t3[F3(t)+F3(t)](F2(t)+F2(t))

e(3)(t)=t3[F3(t)+F3(t)]

e(3)(t)=t3[F3(t)F3(t)]

Hence Proved ..

(12) Show Derivation

α(1)(t)

Ref: Lecture Notes p.15-1

Problem Statement

Show derivation that

α(1)(t)=F(t)+F(t)

Solution

From (4) in p.14-2, we can write down the expression of α(t)

Given :

f(x(t)) = F(t)

Let there exists g1(t)=F(t)

α(t)=ttf(x(t))dt=ttF(t))dt=ttg1(t))dt=g(t)g(t)

α(1)(t)=ddt[g(t)g(t)]

α(1)(t)=g1(t)(g1(t))

but g1(t)=F(t)

α(1)(t)=F(t)+F(t))


Hence Proved ,