University of Florida/Egm6341/s11.TEAM1.WILKS/Mtg11

From testwiki
Jump to navigation Jump to search

EGM6321 - Principles of Engineering Analysis 1, Fall 2010


Mtg 1: Thur,24Aug10

HW P.10-4 (continued)
2) Assume a1(x)0 x  , Eq(8) P.10-3 becomes y+a0(x)a1(x)y=b(x)a1(x) 

Where a0(x)a1(x)=P(x)  and b(x)a1(x)=Q(x)  from K.p.512

Find expression for y(x)  in terms of a0,a1,b .

3) a1(x)=x2+1 
b(x)=2x 
a0(x)=x 

NOTE: cf. to K.p.512

1) K. etal. did not derive expression Eq.(1)p.10-3 h(x)=e[xa0(s)ds] 

"pulling rabbit out of hat"

2) xf(s)ds:=xf(s)ds f(x)dx without constant in K.2003

Lecture: xf(s)ds=f(x)dx+k=xf(s)ds+k 

Eq.(6)p.10-3 :2 constants k1  and k2 

Eq.(1)p.10-3 : h(x) k1 

Eq.(6)p.10-3 : xh(s)b(s)ds k2 

But Eq.(5)p.10-2 is L1_ODE_VC

HW: α   Show that k1  is not necessary.

HW: β   Show Eq.(6)p.10-3 agrees with K.p.512, i.e. y(x)=AyH(x)+yP(x) 

HW: γ   Find yH(x)  independant, i.e. solve y+a0y=0 

δ   How about yP(x)  ?    Variation fo parameters (later)

A class of exact N1_ODE:

Recall Eq.(7)p.10-1 (Case 1)
One possibility to satisfy this condition: Consider:

N(x,y)=N(x)

Template:Font

Nx(x,y)=b(x)

Template:Font

My(x,y)=a(x)

Template:Font

 M(x,y)=a(x)y+k(x)

Template:Font

N(x,y)=xb(s)ds=:b¯ (x)

Template:Font

M+Ny=[a(x)y+k(x)+b¯ (x)y=0]

Template:Font

Where Eq(6) is a L1_ODE_VC (not necessarily exact, but can be made exact: integrating factor method)

Application: Consider a(x)=x4 b(x)=x b¯ (x)=12x2 
k=10 

[x4y+10]+(12x2)y=0

Template:Font

F09: Find h(x)  such that Eq.(7) is exact

Question: But Eq.(6)p.11-3 is linear!
Find N1_ODEs that are exact or can be made exact by integrating factor method.

References


Template:CourseCat