University of Florida/Egm6341/s11.team1.Gong/Mtg30

From testwiki
Jump to navigation Jump to search

Template:Font

page30-1

Appl of HOTR p.292:_ Corrected Trap. rules_

CT1(n)=T0(n)CT0(n)+a10h2+Q(h4)

I=CT1(n)+Q(h(4))

CT2(n)=CT1(n)+a20h4+Q(h6)

I=CT2(n)+Q(h6)

CTk(n)=CTk1(n)+ak0h2k+Q(h2(k+1))




Template:FontTemplate:FontTemplate:FontTemplate:FontTemplate:Font

Template:Font

8,16,... until error I-In=Q(10-6).

Template:FontTemplate:FontTemplate:Font

Template:FontTemplate:FontTemplate:FontTemplate:FontTemplate:FontTemplate:FontTemplate:FontTemplate:Font

Template:FontTemplate:FontTemplate:FontTemplate:Font

 

page30-2

Template:Font

EnT=IIn=abf(x)dxT0(n)

=k=0n1[xkxk+1f(x)dxh2{f(xk)+f(xkH)}] (1)

xk:=a+kh , h:=(ba)/n (2)

TransferxkxkHdx to 1+1dt

x(t):=xk+xk+12+th2, t[1,+1] (3)

{ x(1)=xk x(0)=(xk+xk+1)/2 (4) x(+1)=xk+1


EnT=h2k=0n1[1+1gk(t)dt{gk(1)+gk(+1)}] (5)

gk(t):=f(x(t)) st x[xk,xk+1] (6)

page30-3

1+1(t)P1(t)g(1)(t)dt=HW*5.81+1g(t)dt[g(1)+g(+1)]:=E (1)

Template:Font

Template:FontTemplate:FontTemplate:Font

gk(i)(t)didtigk(t)=(h2)if(i)(x(t)) (2)

x[xk,xk+1]

To obtain higher powers of h_  Take higher

derivation of gk(t)  successive int. by parts_

(recall pf of Taylor series Mtg5 and Mtg6)

(1)E=1+1(t)P1(t)g(1)dt

P2(t):=(1)c1t22!+c3 , c2=(1)0

page30-4

Template:FontTemplate:Font

E=[P2(t)g(1)(t)]1+1[P3g(2)(t)]1+1A=2b+1+1P3g(3)(t)dt (3)

P3=(4)P2(t)dt=t36+αt+β(new intergration constant)=c1t33!+C3t+C4 (C2=(2)0)

Template:FontTemplate:FontTemplate:FontTemplate:FontTemplate:FontTemplate:Font

i.e., make

A2b=(5)0






want P3(t) odd functions





(recall PTemplate:FontTemplate:FontTemplate:Font)

Consider P3 st P3=0 , P3(+1 and 1)=0 (6)

page30-5

File:Nm1.s11.Mtg30.pg5.fig1.svg

P3(0)=0C4=0=β (1)

P3(1)=0=(1)36+α(1)C3=α=16 (2)

P3(+1)=P3 oddP3(1)=0 (3)

Template:Font

P2=C1t22!+C3

P3=C1t33!+C3t

C1=1, C3=16

(4)







steps3ab:_ (P4,P5)





Template:Font Template:Font Template:Font ; intergration by parts

E=[P2(t)g(1)(t)]1+1+1+1P3(t)g(3)(t)dt

=[P2(t)g(1)(t)]1+1+[P4(t)g(3)(t)]1+11+1P4(t)g(4)(t)dt (5)

page30-6

P4(t)=P3(t)dt=t44!+t212+α

=C1t44!+C3t22!+C5=α (1)

C1 and C3 in (4)p.305

Template:FontTemplate:Font

(5)p.305 E=[P2g(1)+P4g(3)]1+1

[P5g(4)]1+1+1+1P5g(5)dt (2)

P5(t)=P4(t)dt=t5120+t336+αt+βC6 (3)

Want eliminate g(4) (thus h5);

So make

A3b=(4)0






want P5 odd functions




(recall PTemplate:FontTemplate:FontTemplate:FontTemplate:FontTemplate:FontTemplate:Font)

page30-7

Similar to Template:FontTemplate:Font

Consider P5(t) st P5(0)=0, P5(+1 and 1)=0 (1)

 C6=0 , C5=7360 HW*5.8 (2)

Template:Font

P4(t)=C1t44!+C3t22!+C5

P5(t)=C1t55!+C3t33!+C5t

C1=1 , C3=16 , C5=7360

(3)








E=[Pg(1)+P4g(3)]1+1(+)1+1P5g(5)dt

(4)





Template:FontTemplate:FontTemplate:Font

E=[P2(t)g(1)(t)]1+1 + P3(t)g(3)(t)

Template:CourseCat