University of Florida/Eml4507/s13.team3.GuzyR5

From testwiki
Jump to navigation Jump to search

Template:Big3

On my honor, I have neither given nor received unauthorized aid in doing this assignment. 

Given

m1=3

m2=2

k1=10

k2=20

k3=15

Find

Solve by hand the gen. eigenvalue problem for the spring-mass-damper system on p.53-13, using the data for the masses in (2) p.53-13b, and the data for the stiffness coefficients in (4) p.53-13b.

Solution

First plug given values into the stiffness matrix:

K=[(k1+k2)k2k2(k2+k3)]


K=[(10+20)2020(20+15)]


K=[30202035]


Next plug stiffness matrix in equation below:

[KγI]x=0


Take the determinant:

det{30γ202035γ}=[(30γ)(35γ)](20)(20)=0


Simplifying:

105030γ35γ+γ2400

γ265γ+650=0


Using the Quadratic formula to solve:

γ1=65+652(4)(650)2

γ2=65652(4)(650)2

Final gamma values:

γ1=52.66

γ2=12.34


To find the eigenvectors, first we:

[KγI]x=[[30202035]γ*[1001][]x1x2]=0


To solve, lets set x1 equal to 1:

[KγI]x=[[30202035]52.66*[1001]][1x2]=0


[KγI]x=[[30202035]+[52.660052.66]][1x2]=0


[KγI]x=[[3052.6620203552.66][1x2]=0


[KγI]x=[[22.66202017.66][1x2]=0


Multiplying out the matrices, we obtain:

2017.66x2=0

x2=1.1325


Using the same process we find x1:

[KγI]x=[[30202035]52.66*[1001]][x11]=0


[KγI]x=[[22.66202017.66][x11]=0


Multiplying out the matrices, we obtain:

22.66x120=0

x1=0.8826

Template:CourseCat